Kernel of triangular derivation of the ring of polynomial of rank 3


Views: 33 / PDF downloads: 37

Authors

DOI:

https://doi.org/10.32523/bulmathenu.2024/3.2

Keywords:

polynomial ring, algebra, algebraic independence, locally nilpotent derivations, kernel.

Abstract

Let $k[x_1,x_2,x_3]$ be an algebra of polynomials in variables $x_1,x_2,x_3$ over an arbitrary field $k$ of characteristic $0$ In this paper we consider triangular derivations of the form $D=\alpha x_2^l x_3^m \partial_1+\beta x_3^n \partial_2+\gamma \partial_3,$ where $\alpha ,\beta ,\gamma \in k$, of the algebra $k[x_1,x_2,x_3].$ It is well known that triangular derivations of the algebra $k[x_1,x_2,x_3]$ are locally nilpotent. The algorithm of A. van den Essen for computing the kernel of locally nilpotent derivation of the polynomial algebra $k[x_1,x_2,\ldots,x_n]$ in variables $x_1,x_2,\ldots,x_n$ over a field $k$ of characteristic $0$ uses the map of J. Dixmier. M. Mayanishi’s theorem states that the kernel of locally nilpotent derivation of the algebra of polynomials in three variables over the field of characteristic 0 is the algebra of polynomials in two variables. In this paper, a completely new algorithm for computing the kernel of triangular derivation of the algebra of polynomials of rank 3 over a field of characteristic 0 is constructed.

References

Van den Essen A. Locally finite and locally nilpotent derivations with applications to polynomial flows and polynomial morphisms, Proc. Amer. Math. Soc. 1992. Vol.152. №10. P. 861-871.

Derksen H. The kernel of a derivation, J. of Pure and Applied Algebra. 1993. Vol.84. P.13-16.

Nagata M., Nowicki A. Rings of constants for k-derivations in $k[x_1,x_2,ldots,x_n]$, J. Math. Kyoto Univ. 1988. Vol.28. №1. P.111-118.

Dixmier J. Sur les algèbres de Weyl, Bull. Soc. Math. France. 1968. Vol.96. P. 209–242.

Van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. Boston: Birkhauser. 2000. P. 329.

Shestakov I.P., Umirbaev U.U. The tame and the wild automorphisms of polynomial rings in three variables, Jour. Amer. Math. Soc. 2004. Vol.17. P. 197-227.

Miyanishi M. Normal affine subalgebras of a polynomial ring, Algebraic and topological Theories - to the memory of Dr. Takehiko Miyata. Kinokuniya, Japan, 1985. P.37-51.

Adams W., Loustaunau P. An Introduction to Gröbner bases. Providence: American Mathematical Society. 1994. P. 306.

Published

2024-09-30

How to Cite

Abutalipova Ш. (2024). Kernel of triangular derivation of the ring of polynomial of rank 3. Bulletin of L.N. Gumilyov Eurasian National University. Mathematics, Computer Science, Mechanics Series, 148(3), 18–25. https://doi.org/10.32523/bulmathenu.2024/3.2