Kernel of triangular derivation of the ring of polynomial of rank 3
Views: 33 / PDF downloads: 37
DOI:
https://doi.org/10.32523/bulmathenu.2024/3.2Keywords:
polynomial ring, algebra, algebraic independence, locally nilpotent derivations, kernel.Abstract
Let $k[x_1,x_2,x_3]$ be an algebra of polynomials in variables $x_1,x_2,x_3$ over an arbitrary field $k$ of characteristic $0$ In this paper we consider triangular derivations of the form $D=\alpha x_2^l x_3^m \partial_1+\beta x_3^n \partial_2+\gamma \partial_3,$ where $\alpha ,\beta ,\gamma \in k$, of the algebra $k[x_1,x_2,x_3].$ It is well known that triangular derivations of the algebra $k[x_1,x_2,x_3]$ are locally nilpotent. The algorithm of A. van den Essen for computing the kernel of locally nilpotent derivation of the polynomial algebra $k[x_1,x_2,\ldots,x_n]$ in variables $x_1,x_2,\ldots,x_n$ over a field $k$ of characteristic $0$ uses the map of J. Dixmier. M. Mayanishi’s theorem states that the kernel of locally nilpotent derivation of the algebra of polynomials in three variables over the field of characteristic 0 is the algebra of polynomials in two variables. In this paper, a completely new algorithm for computing the kernel of triangular derivation of the algebra of polynomials of rank 3 over a field of characteristic 0 is constructed.
References
Van den Essen A. Locally finite and locally nilpotent derivations with applications to polynomial flows and polynomial morphisms, Proc. Amer. Math. Soc. 1992. Vol.152. №10. P. 861-871.
Derksen H. The kernel of a derivation, J. of Pure and Applied Algebra. 1993. Vol.84. P.13-16.
Nagata M., Nowicki A. Rings of constants for k-derivations in $k[x_1,x_2,ldots,x_n]$, J. Math. Kyoto Univ. 1988. Vol.28. №1. P.111-118.
Dixmier J. Sur les algèbres de Weyl, Bull. Soc. Math. France. 1968. Vol.96. P. 209–242.
Van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. Boston: Birkhauser. 2000. P. 329.
Shestakov I.P., Umirbaev U.U. The tame and the wild automorphisms of polynomial rings in three variables, Jour. Amer. Math. Soc. 2004. Vol.17. P. 197-227.
Miyanishi M. Normal affine subalgebras of a polynomial ring, Algebraic and topological Theories - to the memory of Dr. Takehiko Miyata. Kinokuniya, Japan, 1985. P.37-51.
Adams W., Loustaunau P. An Introduction to Gröbner bases. Providence: American Mathematical Society. 1994. P. 306.