О.А. Джурахонов Точные значения верхних граней погрешностей приближения в среднем некоторых классов функций двух переменных треугольными суммами Фурье-Эрмита


Просмотры: 49 / Загрузок PDF: 25

Авторы

  • О.А. Джурахонов Таджикский национальный университет

Ключевые слова:

суммы Фурье-Эрмита, оператор Эрмита,, неравенства типа Джексона­-Стечкина

Аннотация

В работе вычислены точные значения верхних граней погрешностей приближения функций двух переменных треугольными частичными суммами двойного ряда Фурье-Эрмита на классе функций L2(D) по норме пространства L2,p(IR2), где D - оператор Эрмита второго порядка. Получены точные неравенства типа Джексона-Стечкина на множествах L2,p(IR2), в которых величины наилучших полиномиальных приближений оцениваются сверху через обобщенные модули непрерывности m -го порядка.

Загрузки

Опубликован

2018-03-30

Как цитировать

Джурахонов , О. . (2018). О.А. Джурахонов Точные значения верхних граней погрешностей приближения в среднем некоторых классов функций двух переменных треугольными суммами Фурье-Эрмита . Вестник Евразийского национального университета имени Л.Н. Гумилева. Серия Математика. Компьютерные науки. Механика, 122(1), 70–75. извлечено от https://bulmathmc.enu.kz/index.php/main/article/view/19

Выпуск

Раздел

Статьи