Көпдеңгейлі белгілерді біріктіру және кеңістіктік назар модуліне негізделген терең оқыту модельдері арқылы жеке қорғаныс құралдарын анықтау
Қаралымдар: 134 / PDF жүктеулері: 120
DOI:
https://doi.org/10.32523/bulmathenu.2025/2.2Кілт сөздер:
терең оқыт, жеке қорғаныс құралы, өндірістік қауіпсіздік, интеллектуалды жүйе, компьютерлік көруАңдатпа
Ұсынылып отырған зерттеу жұмысында түрлі өндіріс жұмыс орындарында кездесетін күрделі орталарда жеке қорғаныс құралдарын автоматты түрде тануға арналған терең оқыту модельдерінің тиімділігі қарастырылды. Жеке қорғаныс құралдары түрлі жарақаттар мен қауіпті әсерлерден сақтандыруға арналған, ал оларды қолдануды заманауи терең оқыту модельдерінің көмегімен бақылау маңызды әрі қажетті шешім болып табылады. Аталған зияндардың көп түрлілігіне орай, қорғаныс құралдарын толық қамту үшін көпклассты құрылымнан тұратын, әртүрлі көріністерді қамтыған, толық аннотацияланған заманауи, әлі зерделеніп үлгермеген деректер жиынын Yolov11 терең оқыту желісімен оқытылып, олардың сенімділігі мен нақты қолданбалардағы әлеуеті бағаланды. Нәтижелер көрсеткендей, архитектуралық жағынан жетілдірілген модельдер күрделі және теңгерімсіз деректермен де тиімді жұмыс істей алады. Сонымен қатар, зерттеу барысында YOLOv8 және YOLOv10 модельдерімен салыстырмалы талдау жүргізіліп, әр архитектураның нұсқалары бойынша талдау жасалды. Бұл зерттеу өндірістік қауіпсіздік саласындағы интеллектуалды жүйелерді дамытуға үлес қосып, қызметкердің жұмыс орнындағы қауіпсіздік ережелерін сақтауын бақылау, сол арқылы өмірін сақтап қалу тұрғысынан практикалық қолдануға жарамды шешім ұсынады.
Әдебиеттер тізімі
Қазақстандағы өндірістік жарақаттану деңгейі 4{,}5%-ға азайған [Электронды ресурс]. - URL: https://www.gov.kz/memleket/entities/enbek/press/news/details/924686?lang=ru (Қаралған күні: 09.06.2025).
Статистика бойынша медициналық көрсеткіштер – 2022 жыл [Электронды ресурс]. - URL: https://stat.gov.kz/ru/industries/social-statistics/stat-medicine/publications/6411/ (Қаралған күні: 09.06.2025).
Статистика бойынша медициналық көрсеткіштер – 2023 жыл [Электронды ресурс]. - URL: https://stat.gov.kz/ru/industries/social-statistics/stat-medicine/publications/158509/ (Қаралған күні: 09.06.2025).
жылдың басынан бері Қазақстанда өндірісте 40 адам қайтыс болған [Электронды ресурс]. - URL: https://24.kz/ru/news/social/705980-40-pogibshikh-na-proizvodstve-v-kazakhstane-s-nachala-goda (Қаралған күні: 09.06.2025).
Barlybayev A., Amangeldy N., Kurmetbek B., Krak I., Razakhova B., Tursynova N., Turebayeva R. Personal protective equipment detection using YOLOv8 architecture on object detection benchmark datasets: a comparative study, Cogent Engineering. – 2024. – Vol. 11, No. 1. – P. 2333209. – https://doi.org/10.1080/23311916.2024.2333209.
López L., Suárez-Ramírez J., Alemán-Flores M., Monzón N. Automated PPE compliance monitoring in industrial environments using deep learning-based detection and pose estimation, SSRN [Preprint]. – 2024 Nov 28. – https://doi.org/10.2139/ssrn.5037705.
Ferdous M., Ahsan S.M. PPE detector: a YOLO-based architecture to detect personal protective equipment (PPE) for construction sites, PeerJ Comput. Sci. – 2022. – Vol. 8. – Article e999. – https://doi.org/10.7717/peerj-cs.999.
Kim D., Xiong S. Enhancing worker safety: real-time automated detection of personal protective equipment to prevent falls from heights at construction sites using improved YOLOv8 and edge devices, J. Constr. Eng. Manag. – 2025. – Vol. 151, No. 1. – P. 04024187. – https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418.
Amangeldy N., Barlybayev A., Gazizova N., Kurmetbek B. Evaluation of YOLOv8 and YOLOv10 models in PPE recognition tasks, J. Electr. Syst. – 2024. – Vol. 20, No. 10. – P. 8141–8148. – Available from: https://journal.esrgroups.org/jes/article/view/7051.
Shi C., Zhu D., Shen J., Zheng Y., Zhou C. GBSG-YOLOv8n: a model for enhanced personal protective equipment detection in industrial environments, Electronics. – 2023. – Vol. 12, No. 22. – P. 4628. – https://doi.org/10.3390/electronics12224628.
Majumder A., Chatterjee S. YoloGA: an evolutionary computation based YOLO algorithm to detect personal protective equipment, J. Intell. Fuzzy Syst. – 2025 May 15. – [Epub ahead of print].
Bento J., Paixão T., Alvarez A.B. Performance evaluation of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for stamp detection in scanned documents, Appl. Sci. – 2025. – Vol. 15, No. 6. – P. 3154. DOI: https://doi.org/10.3390/app15063154.
Barro-Torres S., Fernández-Caramés T.M., Pérez-Iglesias H.J., Escudero C.J. Real-time personal protective equipment monitoring system, Comput. Commun. – 2012. – Vol. 36, No. 1. – P. 42–50. DOI: https://doi.org/10.1016/j.comcom.2012.01.005.
Nikulin A., Ikonnikov D., Dolzhikov I. Smart personal protective equipment in the coal mining industry, Int. J. Civ. Eng. Technol. – 2019. – Vol. 10, No. 4. – P. 852–863.
Park S.H. Personal protective equipment for healthcare workers during the COVID-19 pandemic, Infect. Chemother. – 2020. – Vol. 52, No. 2. – P. 165. DOI: https://doi.org/10.3947/ic.2020.52.2.165.
Wong T.K.M., Man S.S., Chan A.H.S. Critical factors for the use or non-use of personal protective equipment amongst construction workers, Saf. Sci. – 2020. – Vol. 126. – Article 104663. DOI: https://doi.org/10.1016/j.ssci.2020.104663.
Zhang H., Mu C., Ma X., Guo X., Hu C. MEAG-YOLO: A novel approach for the accurate detection of personal protective equipment in substations, Appl. Sci. – 2024. – Vol. 14, No. 11. – P. 4766. DOI: https://doi.org/10.3390/app14114766.
Ragab M.G., Abdulkader S.J., Muneer A., et al. A comprehensive systematic review of YOLO for medical object detection (2018 to 2023), IEEE Access. – 2024. DOI: https://doi.org/10.1109/access.2024.3386826.
Chen J., Zhu J., Li Z., Yang X. YOLOv7-WFD: A novel convolutional neural network model for helmet detection in high-risk workplaces, IEEE Access. – 2023. – Vol. 11. DOI: https://doi.org/10.1109/ACCESS.2023.3323588.
Elesawy A., Abdelkader E.M., Osman H. A detailed comparative analysis of You Only Look Once-based architectures for the detection of personal protective equipment on construction sites, Eng. – 2024. – Vol. 5, No. 1. DOI: https://doi.org/10.3390/eng5010019.
Kwon Y.H., Park S., Minh Luan T., Oh S., Heo J. Training data sensitivity analysis of deep neural network for differentiating construction laborers with/without safety helmets, Computing in Civil Engineering 2023, ASCE. – 2024. DOI: https://doi.org/10.1061/9780784485248.062.
Otgonbold M.E., Gochoo M., Alnajjar F., et al. SHEL5K: An extended dataset and benchmarking for safety helmet detection, Sensors. – 2022. – Vol. 22, No. 6. DOI: https://doi.org/10.3390/s22062315.
Samma H., Al-Azani S., Luqman H., Alfarraj M. Contrastive-based YOLOv7 for personal protective equipment detection, Neural Comput. Appl. – 2024. – Vol. 36, No. 5. DOI: https://doi.org/10.1007/s00521-023-09212-6.
Wang Z., Wu Y., Yang L., et al. Fast personal protective equipment detection for real construction sites using deep learning approaches, Sensors. – 2021. – Vol. 21, No. 10. – Article 3478. DOI: https://doi.org/10.3390/s21103478.
Nguyen N.T., Tran Q., Dao C.H., et al. Automatic detection of personal protective equipment in construction sites using metaheuristic optimized YOLOv5, Arab J. Sci. Eng. – 2024. – Vol. 49, No. 10. DOI: https://doi.org/10.1007/s13369-023-08700-0.
Zhang Q., Pei Z., Guo R., et al. An automated detection approach of protective equipment donning for medical staff under COVID-19 using deep learning, Comput. Model. Eng. Sci. – 2022. – Vol. 132, No. 3. DOI: https://doi.org/10.32604/cmes.2022.019085.
Alateeq M.M., Fathimathul F.R., Ali M.A.S. Construction site hazards identification using deep learning and computer vision, Sustainability. – 2023. – Vol. 15, No. 3. DOI: https://doi.org/10.3390/su15032358.
Wang Z., Cai Z., Wu Y. An improved YOLOX approach for low-light and small object detection: PPE on tunnel construction sites, J. Comput. Des. Eng. – 2023. – Vol. 10, No. 3. DOI: https://doi.org/10.1093/jcde/qwad042.
Ahmad H.M., Rahimi A. SH17: A dataset for human safety and personal protective equipment detection in manufacturing industry, J. Saf. Sci. Resil. – 2024. – Vol. 6, No. 2. – P. 175–185. DOI: https://doi.org/10.1016/j.jnlssr.2024.09.002.
Nath N.D., Behzadan A.H., Paal S.G. Deep learning for site safety: Real-time detection of personal protective equipment, Automation in Construction. – 2020. – Vol. 112. – Article 103085. DOI: https://doi.org/10.1016/j.autcon.2020.103085.
SH17 dataset for PPE detection [Electronic resource] / Mughees Ahmad. – URL: https://www.kaggle.com/datasets/mugheesahmad/sh17-dataset-for-ppe-detection, free. – Accessed: 26.06.2025.






