Еңбек қорғау шығындарын есепке алу және талдау бойынша ақпараттық-талдамалық деректер базасын қалыптастырудың негiзi мен ғылыми дәйегi ретiндегi математикалық әдiстер
Қаралымдар: 122 / PDF жүктеулері: 77
DOI:
https://doi.org/10.32523/bulmathenu.2025/1.3Кілт сөздер:
математикалық әдiстер, ақпараттық-талдамалық деректер базасы, еңбек қорғау шығындарын есепке алу және талдау, базалық көрсеткiштер, бағдарламалық өнiмАңдатпа
В современных условиях возрастает интерес к исследованию экономических
потерь от производственного травматизма и профзаболеваний в различных отраслях
экономики. Основными методами исследования являются математические методы,
которые используются при расчетах, анализе структуры, динамики и т.д. Влияние
экономических потерь и их обратно-пропорциональная связь с инвестициями в охрану
труда (превентивными расходами) является важным в сохранении здоровья работника,
повышения производительности труда и экономики в целом, что обосновывает необходимость
в совершенствовании охраны труда, посредством разнообразных инструментов, одним из
которых является сравнительный аспект затрат на охрану труда предприятия, в частности,
направленных на улучшение условий труда в анализируемом периоде.
В статье дается обоснование информационно-аналитического банка данных по учету
и анализу затрат на охрану труда на основе применения математических методов,
среди которых отметим методы сравнения, группировки и систематизации посредством
сопоставления первичных данных по основным статьям расходов на охрану труда. Виды
анализируемых расходов определены согласно нормам трудового законодательства Республики
Казахстан. Цель исследования состоит в применении математических методов при разработке
программного продукта по учету и анализу затрат на охрану труда.
Әдебиеттер тізімі
Global Smart City Report 2024 by Research and Markets [Electronic resource]. -URL: https://www. globenewswire.com/en/search/organization/Research%2520and%2520Markets (Accessed: 19.11.2024).
Kim, J. (2022). Smart city trends: A focus on 5 countries and 15 companies. Cities, 123, 103551.
Public services and online information [Electronic resource]. -URL: https://egov.kz/cms/kk (Accessed: 18.11.2024).
UN E-Government Survey 2024 [Electronic resource]. -URL: https://publicadministration.un.org/egovkb/en-us/Reports/UN-E-Government-Survey-2024 (Accessed: 18.11.2024).
CNN US [Electronic resource]. -URL: https://edition.cnn.com/2023/11/28/us/pennsylvania-water-cyberattack/index.html (Accessed: 18.11.2024).
LeMagIT [Electronic resource]. -URL: https://www.lemagit.fr/actualites/366543032/Olsztyn-Pologne-premiere-Smart-City-touchee-par-une-cyberattaque (Accessed: 20.11.2024).
The TechCrunch news [Electronic resource]. -URL: https://techcrunch.com (Accessed: 19.11.2024).
Overview of cyberattacks on connected cities [Electronic resource]. -URL: https://www.stormshield.com/news/overview-of-cyberattacks-on-connected-cities (Accessed: 20.11.2024).
Houichi M., Jaidi F., Bouhoula A. Analysis of Smart Cities Security: Challenges and Advancements //2022 15th International Conference on Security of Information and Networks (SIN). – IEEE, 2022. – P. 01-05. doi: 10.1109/SIN56466.2022.9970494
Adamova A., Zhukabayeva T. Development of a methodology for data normalization and aggregation to enhance security levels in internet of things interactions// Scientific Journal of Astana IT University. -2024. -Vol. 19. -Р. 16–27. doi: https://doi.org/10.37943/19UQOC7381
Amaizu G.C., Lee J.M., Kim D.S. Machine Learning Based Security for Smart Cities //2022 27th Asia Pacific Conference on Communications (APCC). – IEEE, 2022. – P. 572-573. doi: 10.3390/fi1509028
Maseleno A. et al. An Intelligent Intrusion Detection for Smart Cities Application Based on Random Optimization with Recurrent Network // Artificial Intelligence Applications for Smart Societies: Recent Advances. – Cham: Springer International Publishing, 2021. – P. 119-133. -URL: https://doi.org/10.1007/978-3-030-63068-3-8.
Alhowaide A., Alsmadi I., Alsinglawi B. Ensemble-based Cyber Intrusion Detection for Robust Smart City Protection // 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT). – IEEE, 2024. – P. 124-129. -URL: https://doi.org/10.1109/dcoss-iot61029.2024.00027.
Sirigineedi M. et al. Enhanced Security in Smart City GAN-Based Intrusion Detection Systems in WSNs // In: Enhancing Security in Public Spaces Through Generative Adversarial Networks (GANs). – IGI Global, 2024. – P. 162-176.
Rakha M. A. et al. A Detailed Comparative Study of AI-Based Intrusion Detection System for Smart Cities //2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE). – IEEE, 2024. – P. 1783-1790. doi: 10.1109/ic3se62002.2024.10593485
Akhilesh R. et al. Automated penetration testing framework for smart-home-based IoT devices //Future Internet. – 2022. – Vol. 14. – No. 10. – P. 276. doi: 10.3390/fi14100276
Kim K. et al. Cybersecurity and cyber forensics for smart cities: A comprehensive literature review and survey //Sensors. – 2023. – Vol. 23. – No. 7. – P. 3681. doi: 10.3390/s23073681
Al-Taleb N. et al. Cyber threat intelligence for secure smart city //arXiv preprint arXiv:2007.13233. – 2020. doi: 10.48550/arXiv.2007.13233
Mijwil M. M. et al. Cybersecurity Challenges in Smart Cities: An Overview and Future Prospects //Mesopotamian journal of cybersecurity. – 2022. – Vol. 2022. – С. 1-4.
Baig Z.A. et al. Future challenges for smart cities: Cyber-security and digital forensics //Digital Investigation. – 2017. – Vol. 22. – P. 3-13.
Li C. et al. Securing SDN infrastructure of IoT–fog networks from MitM attacks //IEEE Internet of Things Journal. – 2017. – Vol. 4. – No. 5. – P. 1156-1164.
Hamid B. et al. Cyber security issues and challenges for smart cities: A survey //2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). – IEEE, 2019. – P. 1-7.
Toh C. K. Security for smart cities. IET Smart Cities. – 2020. 2(2), -P. 95–104.
Chen W. et al. A DDoS attacks traceback scheme for SDN-based smart city //Computers & Electrical Engineering. – 2020. – Vol. 81. – P. 106503.
Telo J. Smart city security threats and countermeasures in the context of emerging technologies //International Journal of Intelligent Automation and Computing. – 2023. – Vol. 6. – No. 1. – P. 31-45.
Kitchin R., Dodge M. The (in) security of smart cities: Vulnerabilities, risks, mitigation, and prevention //Smart cities and innovative Urban technologies. – Routledge, 2020. – P. 47-65.
Lupton B. et al. Analysis and prevention of security vulnerabilities in a smart city //2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). – IEEE, 2022. – P. 0702-0708..
Cui L. et al. Security and privacy in smart cities: Challenges and opportunities //IEEE access. – 2018. – Vol. 6. – P. 46134-46145.
Batmetan J. R. et al. IT Infrastructure Library Framework Approach to the Measurement of e-Government Maturity //International Journal of Information Technology and Education. – 2022. – Vol. 1. – No. 2. – P. 119-128.
de Santana E. S. et al. SMM: a maturity model of smart cities based on sustainability indicators of the ISO 37122 //International Journal of Advanced Engineering Research and Science. – 2019. – Vol. 6. – No. 2. – P. 13-20.
NIST [Electronic resource]. -URL: https://www.nist.gov/.
Cai W. et al. A software vulnerability detection method based on deep learning with complex network analysis and subgraph partition //Information and Software Technology. – 2023. – Vol. 164. – P. 107328.
Naik N. et al. Comparing attack models for it systems: Lockheed martin’s cyber kill chain, mitre attack framework and diamond model //2022 IEEE International Symposium on Systems Engineering (ISSE). – IEEE, 2022. – P. 1-7.
Bromander S. et al. Examining the" Known Truths" in Cyber Threat Intelligence–The Case of STIX //International Conference on Cyber Warfare and Security. – Academic Conferences International Limited, 2020. – P. 493-XII.






