https://bulmathmc.enu.kz/index.php/main/issue/feed Bulletin of L.N. Gumilyov Eurasian National University. Mathematics, computer science, mechanics series 2025-07-16T02:16:51+00:00 Жубанышева Аксауле vest_math@enu.kz Open Journal Systems <p><strong>Bulletin of L.N. Gumilyov Eurasian National University.</strong> <strong>Mathematics, computer science, mechanics series</strong></p> <p><strong>Subject areas:</strong> Publication of materials in all areas of theoretical and applied research in the field of mathematics, computer science and mechanics</p> <p><strong>Editor-in-Chief:</strong> <a href="https://www.scopus.com/authid/detail.uri?authorId=56294903300">Temirgaliyev Nurlan</a>, Doctor of Physical and Mathematical Sciences, Professor, Director of the Institute of Theoretical Mathematics and Scientific Computations of L.N. Gumilyov Eurasian National University, Astana, Kazakhstan</p> <p><strong>Certificate of registration of mass media:</strong> № KZ65VPY00031936 dated 02.02.2021</p> <p><strong>ISSN</strong> <a href="https://portal.issn.org/api/search?search[]=MUST=allissnbis=%223007-0155%22&amp;search_id=37191800" target="_blank" rel="noopener">3007-0155</a> <strong>eISSN</strong> <a href="https://portal.issn.org/api/search?search[]=MUST=allissnbis=%223007-0155%22&amp;search_id=37191800" target="_blank" rel="noopener">3007-0163</a></p> <p><strong>DOI of the journal:</strong> <a href="https://bulmathmc.enu.kz/index.php/main/index" target="_blank" rel="noopener">10.32523/2616-7182</a></p> <p><strong>Frequency</strong> – 4 times a year.</p> <p><strong>Languages:</strong> Kazakh, English, Russian</p> <p><strong>Review:</strong> Double Blindness</p> <p><strong>Percentage of rejected articles:</strong> 65%</p> <p><strong>Founder and publisher:</strong> <a href="https://enu.kz/en">NJSC "L.N. Gumilyov Eurasian National University"</a>, Astana, Republic of Kazakhstan</p> https://bulmathmc.enu.kz/index.php/main/article/view/323 Generalizations of the Rudin - Keisler preorder and their model-theoretic applications 2025-07-16T02:16:51+00:00 Nikolai Polyakov npolyakov@hse.ru Denis Saveliev d.i.saveliev@gmail.com <p>Generalizing of the Rudin--Keisler preorder, we introduce relations $R_\alpha$ (and $R_{&lt;\alpha}$) on the set $\beta\omega$ of ultrafilters on~$\omega$. They form an ordinal sequence of length~$\omega_1$ which is strictly increasing by inclusion and lies between the Rudin--Keisler preorder and the Comfort preorder. We show that the composition of these relations is expressed via a~multiplication-like operation on ordinals. Explicit calculations of this operation show that $R_{&lt;\alpha}$ is transitive (and so, a preorder) if the ordinal~$\alpha$ is multiplicatively indecomposable. The proposed constructions have several model-theoretic consequences. Generalizing significantly results of Garc{\'\i}a-Ferreira, Hindman, and Strauss concerning an interplay between ultrafilter extensions of semigroups and the Comfort preorder, we prove that for every model~$\mathfrak A$, ultrafilter~$\mathfrak u$, and ordinal~$\alpha$, the set $\{\mathfrak u:\mathfrak u\,R_{&lt;\alpha}\,\mathfrak v\}$ forms a~submodel of the ultrafilter extension~$\beta\mathfrak A$ of~$\mathfrak A$ if the ordinal~$\alpha$ is additively indecomposable. Furthermore, generalizing Blass' characterization of the Rudin--Keisler preorder via ultrapowers, we characterize the relations $R_\alpha$, and in particular, the Comfort preorder, via a~specific version of limit ultrapowers.</p> 2025-06-30T00:00:00+00:00 Copyright (c) 2025 Bulletin of L.N. Gumilyov Eurasian National University. Mathematics, computer science, mechanics series