JL.H. I'ymunes aroranarsl Eypasus yarTeik yauBepcureTinin xabapiibicel. MaremaTuka.
KowmmrerorepJik rolibiMaap. Mexaruka cepusicol, 2020, Tom 131, Ne2, 8-27 6errep
http://bulmathme.enu.kz, E-mail: vest mathQ@enu.kz

MPHTMU: 30.19.33, 30.19.21
L.A. Alexeyeva, M.M. Akhmetzhanova

Institute of Mathematics and Mathematical Modelling, Almaty, Kazakhstan
(E-mail: alexeeva@math.kz, mariella80@mail.ru)

Method of generalized functions in boundary value problems of thermoelastic rod
dynamics

Abstract: The method of generalized functions (GFM) has been developed to solve transient
and vibrational boundary value problems of thermoelastic rod dynamics using a model of coupled
thermoelasticity. Thermoelastic shock waves arising in such structures under the influence of
shock loads and heat flows are considered. Conditions on their fronts were obtained. The
singularity of the assigned boundary tasks taking into account shock waves has been proved.
On the basis of GFM, a system of algebraic resolving equations is built for a wide class of
boundary problems to determine their analytical solutions. Dynamics of the rod under the action
of forces and heat sources of various types, including those described by singular generalized
functions, which allow modeling the effect of pulsed concentrated sources, are studied. Computer
implementation of solutions of one edge problem at stationary oscillations was carried out, results
of numerical experiments of calculation of rod thermodynamics at low and high frequencies
are presented. These solutions and algorithms can be used for engineering calculations of rod
structures to evaluate their strength properties.
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Introduction. Rod structures are widely used in mechanical engineering as connecting and
transmission links for structural elements of a wide variety of machines and mechanisms. During
operation, they are subjected to variable mechanical and thermal stresses that create a complex
stress-strain state in structural elements, depending on their temperature, and affecting their
strength and reliability. Therefore, the determination of a thermal stress state of rod structures
taking into account their mechanical properties (in particular, elasticity) is one of the urgent
scientific and technical problems.

When studying thermodynamic processes in structures, equations of uncoupled thermoelas-
ticity are usually used. In this model at first the temperature problem is solved for determining
the temperature field without taking into account the deformation of medium. This reduces
a problem to constructing a solution of boundary value problem (BVP) for the heat parabolic
equation. After determining a temperature field, BVP of dynamics of thermo-elastic medium is
solved, in which a gradient of known temperature field is introduced as a mass force in motion
equations of elastic medium. This model describes thermodynamic processes well at low strain
rates and is completely unsuitable for describing high-speed dynamic processes.

Here, a problem of determining a thermostressed state of a thermoelastic rod is considered,
using a model of coupled thermoelasticity. In this case, a heat equation contains a divergence of
a velocity of material points of a medium, and a temperature gradient is included in equations
of elasticity. This connects equations into one system of differential equations of mixed type
without separating a temperature field and elastic deformations.
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Note that nonstationary BVPs of coupled thermoelastodynamics by plane deformation and
in 3D-space were considered by authors [1-7] and others. They elaborated analytical Boundary
Integral equations Method and numerical Boundary Elements Method for construction BVP
solutions in a space of Laplace or Fourier transformation over time. In [3] BIEM is based
on potentials theory. In [7] BIEM was elaborated by use General Functions Method which is
essentially convenient for solving hyperbolic and mixed problems of mathematical physics. The
base ideas of this method are presented in paper [8].

Here we elaborate this method for solving non-stationary BVPs and stationary vibrations
problems of dynamics of a thermoelastic rod under the action of power and heat sources of
various types, including those described by singular generalized functions. The latter allows
to simulate the impact of pulsed concentrated sources of various types. Thermal shock waves
that arise in such structures under action of shock loads and heat fluxes are considered, and
conditions at their fronts are obtained. Uniqueness of posed boundary value problem is proved,
subject to shock waves. Based on GFM, algebraic resulting equations system for wide class
of boundary value problems have been constructed for determination of analytical solutions of
BVPs. As example the computer implementation of solutions of one BVP was carried out by
stationary oscillations at low and high frequencies The results of some computer experiments
have been presented.

1. Statement of non-stationary boundary value problems of connected thermoe-
lasticity. A thermoelastic rod of length 2L are considered, which is characterized by a density
p,rigidity EJ , and thermoelastic constants -, and  [1,2].The movement of the cross sections
of the rod and the temperature field of the rod is described by a system of hyperbolic-parabolic
equations of the form:

p62u7$x —PUytt _ﬁyeaw +PF1 = O?

eul‘x _K/_laﬂ —NU,xt +F2 =0. (11)

Here u(z,t) are the components of the longitudinal displacements, 6(x,t) are the relative tem-
perature (0 = T(x,t) — T'(x,0)), T are absolute temperature, F; are a longitudinal component

of acting forces; a velocity of thermoelastic waves propagation ¢ = ,/ % . An action of heat

sources describes by the function Fy = (Aox) W (x,t), where W are amount of released (or
absorbed) heat per unit volume per unit time, A\p is a thermal conductivity coefficient.

We suppose that functions Fi(x,t), Fa(x,t) belong to a space of generalized functions (dis-
tributions) of slow growth S [9], that allows us to simulate thermodynamic processes in rods
under action of various types of concentrated heat sources. Hereinafter, we use the notation for
partial derivatives: w;,; = Ou;/0x; = Oju; . Thermoelastic stress in the rod is determined by
the Duhamel-Neumann relation [1,2]:

o = pctu,, —0 (1.2)

We consider a number of direct boundary value problems of thermoelasticity whose solutions
satisfy the following initial and boundary conditions. Initial conditions (Cauchy conditions): at
t = 0 the displacement, velocity and temperature are known:

u(z,0) =wug(z), 6(x,0)=0(z), [z<L;
O (x,0) =g (z), |z|<L
Boundary conditions at the rod ends (x =x; = —L, x = 29 = L) depend on BVP type. Here

at first we consider four classic BVPS.
BVP I. A displacement and temperature at rod ends are known:

(1.3)

u(zj,t) =w;(t), O(x;,t)=0;(t); j=1,2 (1.4)
BVP II. Stresses and heat fluxes at rod ends are known:
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o(xj,t) =pj(t), Oulr;t)=qt); j=1,2 (1.5)
BVP III. A displacement and heat fluxes at rod ends are known:

u($jat) = Wy (t)v 971 (1:j7t) ZQj(t); j=12 (16)
BVP IV. Stresses and temperature at rod ends are known:

U(Q?j,t) =Py (t), Q(xj,t) :gj(t); ] = 1,2 (1.7)
It is assumed that the boundary functions satisfy the following smoothness conditions:

uj(t) € €(0,00),05(t) € C(0,00), 45(t) € Ln(0,00), p;(t) € L1(0,50) (1.8)
and are regular functions from S’ (Rl) .

Remark. By n = 0 it is the model of uncoupled thermoelasticity, by v = 0 the first equation
(1.1) is the motion equation of elastic rods.

2. Shock thermoelastic waves as generalized solutions of motion equations. The
system of equations (1.1) has mixed hyperbolic-parabolic type. Due to a hyperbolic personality,
it’s possible an occurrence of thermoelastic shock waves by cause shock effects at ends of a rod.
To derive shock waves, we consider Egs (1.1) and their solutions in a space of distributions S’.

Let u(x,t),0(x,t) are classic solution of Eqs(1.1). We consider them as regular distributions,
which are differentiable between fronts of shock waves, where there derivatives are discontin-
ues . According to the rules of differentiation of such generalized functions [9], Eqs (1.1) for
thermoelastic shock waves take the form in S’:

P Uzx =Pt =10,z +F1 + ([pPuse —v0) v — p[ue vi) O (x, 1)+

+0, [pc?u] dp(,t) — O [pu] 6p(z,t) = 0,

0,20 *K'_leat — Nyt +F2 + O [0] VzOF + [eax] VgpOp—

— [/ﬁ_19 + nu,x] v — O Inu] vydp = 0.
Here, the square brackets denote the jump of functions indicated in them at the fronts of shock
waves, 0p(x,t) is singular generalized function — a simple layer on characteristic surface F' in
the set D™ = {(x,7) : |x| < L, 7 < t}, on which derivatives have jumps. As follow from (1.1),
the next determinant vanishes on F':

(2.1)

p (C2V§ — 1/3) 0
v — Ny
where v = (v, 1) are the normal to F' in D™ . It follows from (1.7) that the lines x = const
and t = const are characteristic surfaces for equations (1.1), and for shock waves ( £} ):

= —Npry (021/9% - l/t2) =0 (2.2)

v = —clvyl (2.3)
Here the wave front F; has a simple form:
Fy={(z,t) iz £ect)=2"}

It is the point of derivatives discontinuity which moves at a speed ¢ from the point 20, where
it is formed, in one direction along the rod or another.

As in a domain of differentiability, shock waves are solutions of Egs. (1.1), from (2.1), taking
into account (1.2), to be generalized solution of (1.1) it’s necessary to perform next equalities:

([,OCQU,m —70] Vg — P [ty] l/t) O + 0, { [chU] 5p} — 0 {[pu]or} =0
O {[0) vudF} + ([G,x] Uy — [/1_19 + nu,x]) vop =0
From (2.4), taking into account (2.3), it follows that at the fronts of shock waves the following
conditions for jumps must be satisfied:

(2.4)

[U]Ft =0, [U]Ft = *PC[Q}F,& (2.5)
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[H]Ft =0, ch]Ft =7 [u]Ft (2.6)
The first condition (2.5) is continuity of displacements which is necessary to conserve contin-
uity of a medium. The second condition describes a stress jump (shock), which leads to a jump
in velocity at the wave front. From the first and second conditions (2.6) it follows that the
temperature is continuous at the wave fronts but a heat flux has a jump proportional to a jump
in displacements velocity at wave front.

From these relations follow that a jump in a heat flux in the rod also forms a thermoelastic
shock wave, since it causes a jump in velocities at the front, which leads to a jump in stresses
on it. Such thermo-shock waves are always formed at the ends of rod if, until a fixed point in
time, it was in a static state, and then non-zero stresses or heat fluxes , applied to it at the ends,
create thermoelastic shock waves.

3. Uniqueness of BVP solution subject to shock waves. We show uniqueness of the
solution of the initial-boundary value problem in presence of shock waves. It is assumed that
at each fixed point in time, the domain of solution determination with respect to x are divided
into a finite number of intervals between the fronts of shock waves F} at which the solution is
continuous and differentiable according to (2.1). Denote an energy density of a rod

Bla,1) = 0,5 {p (1)” + ¢ (u.a)” + 7 ()~ 67}
and power of internal forces:
M(z,t) = uy (c Uy 70) +ny 106, .

Further we assume ||v|| = 1. From (2.2) it follows: v = (v, 14) = (1, —¢)/V/1 + ¢2. The following
theorem is true.
Theorem 1 (law of conservation of energy)

L t L
/ (E(x,t) — E(z,0))dz = /dt/ (u,e Fy + 77’}/_19F2) dx+
—-L 0 —L

t

—I—/(M(L,t) — M(—L,t))dt —ny 1O/dt

0

'n\h

Proof. We fix an arbitrary time ¢ > 0. Multiplying the first equation (1.1) in the field of dif-
ferentiability by w,; , and the second equation by af , after a series of equivalent transformations,
we obtain the equalities:

pCQUﬂf Uypr —Ust Uyt —YUst eax +PF1Uat =0=
81‘ (U,t (pCZU%E _70)) - 07 5815 {(uut)z + pCQ (u7$)2} + YUtz 0 + Uyt ﬂFl - O;

00,00 —K 100, —bU,p +0F; = 0 =
—0,567 180,02 + 8, (00,5) — MUz — (0,2)° + 0F> =0
Folding them, we have
Oy (u,t (chu,x —79) + 0499,;,;) —
0,50, {p (,0)% + €2 (w,0)? + a/{_192} —a(0,.)+
+O0u, g1 (v — an) + uy pF1 + abFy = 0.
where a =1n/v. As a result, we obtain the equality:

—1 2 —1
OB (z,t) — O M (z,t) +ny " (0,2)° = uy F1 + 1y 0F (3.1)
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Lets integrate (3.1) over D~ with allowance for the division of integration region by the fronts
of shock waves Fj(x,t) into subdomains where the solution is differentiable. As a result, using
the Ostrogradsky-Gauss theorem, we obtain the following integral equality:

f (E(x7t) - E(xao)) dx + Odjdt f (0,$)2dx =
- t ’ t -r L
—L

+ {Ff zk: VoM (z,t) — nE(z,t)|p, dS(Fk)} -

We show that, due to conditions at the fronts of shock waves (2.5)-(2.6), the jumps on the right-
hand side of this equality are equal to zero. To do this, we make a series of transformations:

[M<x7 t)]Fk = [uﬂf U]Fk ta [997$]Fk =u [U]Fk + ot [uﬂf]Fk + b [Gﬂl’]Fk =
= (U+ —pcu +’79) [unf]Fk = pc (CU,; —U_,t) [uat]Fk

(here the signs in the upper index indicate the values of the corresponding functions on the right
or left side of the wave front). Consequently,

V1t M(z,t) — nE(2,t)]p = [M(x,t) + cE(x,t)] 5, =
= pe (cug —u” ) [l g, — pe[udlp, (cu™ 0 —uy") = pefeu.a +usd] [l g, =0
since, in virtue (2.5),

1 .
[cu,x —i—u,t] = E ([pczum —9] I + pc [U]Fz) =

1 .
= %[a—i-pcu]Ft =0
Therefore, from (3.2) we obtain the formula of the theorem.

Theorem 2. The solutions of BVPs I-1V are unique.

Proof. We carry out the opposite. Let there exist two solutions of the considered BVP from
the stated ones. Then their difference, by virtue of linearity, will also be a solution of (1.1)
for F; = 0,5 = 1,2, and satisfy zero initial and boundary conditions. We write the energy
conservation law for such solution. According to Theorem 1:

L t L t
/E(x,t)dernv_l\/l+c—2)/dt/(9,m)2dx:/(M(L,t)—M(—L,t))dt
—L 0 —L 0
But

t t
/M(iL,t) dt = / (wu (£L,t)o(£L,t) + vy '0(£L, )0, (£L,t)) dt = 0
0 0

since by one of the factors in each integrand is equal to zero, due to the zero boundary conditions

of any BVP. Therefore
t L

L
/E(x,t)da:—i—n’yl/dt/(G,x)2da::0
—L 0 —L
Due to the zero initial conditions and the positive definiteness of the integrands, we obtain
u =0, 0 =0. Then decisions are coincided. The theorem is proved.

4. Generalized solution of BVP. To determine the solution, we pose a boundary value
problem in the space of two-dimensional generalized vector functions

Sy(R?) = {f = (filw,0), folw,1)), (w,t) € R?, fj € S'(R%),j=1,2}
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Their components are generalized functions which belong to S’(R?) [3]). To do this, we intro-
duce a generalized regular vector function (mark them with a hat):

(i1, 82) = {0, 0} = {u(x,0)H (2)H(¢),0(z,t)H (z)H(t)}

Here (ui,u2) = (u(x,t),0(x,t)) are the solution of BVP, H(z) are the Heaviside function.
In Sy(R?) vector-function (dy,1s) satisfies to the next system:

iy —lgr — 70,0 +F1 = — {t10(2)0(t) + uo(z)8 ()} H(L — |z|)+
+e H () {(p1(t) — 401(t)) 0(2 + L) — (p2(t) —0a(t)) 6(x — L)} +
+etH (t ){ul( )0'(x + L) —ua(t)d'(x — L)},
eaxz —K Oat — Nyt +Fo = (41)
= H ()8 (L +2) (q1(t) = nin () — H (8) 6 (L — ) (g2(t) — miz(t)) +
+(01<t>H<t>6’<L+x>) — (a0 H ()8 (L~ 2)) = Kk o) () H (L — |a) -
b (1) H (L — [z]) Byito () ~ 1un (0)8 (£) 6 (L + ) + mua(0)5 (1) 5 (L — )
Here are 0 (t) is singular delta - function, v =/p.

Using the property of the matrix of fundamental solutions U f(aj, t), the solution of Eqs(4.1)
can be written as following tensor-functional convolution:

_|_

u(z,t)H (t) H (L — |z|) = Fl*Ull—i—Fg*UlQ—i—
(—

CZi 1)’f+1{( (t)—ryak(t))TU}(erL,t)+uk(t)>§U11,x(a:+L,t)}+
k=1

+H t)ki( 1)kt (Qk(t)—nﬂk(t))jﬁf (x—(—l)kL)+9k(t)H(t)jU12mc (x+L)= (42
— {ito(@) + U} (@, ) + o)) + U} 1 (x| H(L — [a])-
“nu(OU (L +2.0) +n1af0) 03 (2~ L.0) -
60(x)H (L — []) x UF —nH (L — [z]) dyiio() x UF
0 (x,t)H (t) H (L — |z|) = Fy « Uj + Fy « U3+
2
32 ()M () =7 () 1 UB e+ L,0) 4 wn(0) § U (2 + L) |+
RIS (<) (gu(t) — nin(0) 103 (0 — (“DRL) 4 Ou(OH (0 U (e + D)~ (43)

)
1
— {it0(@) x U3 (@) + o)) « U3 1 (1) } H(L = la)-

—u1(0)U3 (L + 2, t) + nu2(0)U3 (z — L,t) —
(z)H (L — |2|) * U3 — nH (L — |2|) dxtio(z) * Us

The matrix of fundamental solutions Uij (z,t) (i,j = 1,2) is solution (1.1) for singular
F = (Fi, Fy) = 615(x)5(t)

65 is Kronecker symbol. The integral record of convolutions (4.2), (4.3) has the next form:

w(z,t) H(|jz| — LYH (t) = Fy « U + Fy « U+

2 t
+PH()Y (- k+1/ w(T) = 305(T) U (x — (=D*L,t — 1)+
+u (DU (@ = (<)Lt = 1) dret
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(au(r) = nig (7)) Uiz — (~1)*L,t — )+ (4.4)

+
=
—
=
(]
T
—_
=
+
—
o _
—

(TR (& = (<)Lt~ 7) }dr—

L
—H (L — |z / (o (9) UL (& — 9,t) + wo(y)) Ubs(@ — g, t)dy—
“L

—1u1(0)UF (L + ,t) + 1ua(0)UF (x — L, t)

— |z]) / {71 U2z — y, )00 (y) — nUL(z — y,)dyin(y) } dy.

0 (x,t)H (t)H (L — |z|) = Fy « U3 + Fy « U2+

+c? ’f“/{ —30,(7)) Ul (x + L, t — 7)+

0
+up (U3 2 (x + Lyt — 7) } dr+

b2
H t)/{z k:+1 (qe(T) = niug (7)) U22 (ZE—(—l)kL,t—T)+
o —

+0,(T)U2 o (x4 L, t — 7')} dr— (4.5)

L
— |z[) / {i0(y)Us (x — y, t) + uo(y))Us i (x — y, 1)+
L

+1u1(0)U3 (L + 2 — y,t) + nua(0)Uj (x —y — L,t) } dy—

— ) / [ Y0 (0) U2 (@ — 1. 8) + U2z — 4, 6)yinn(y) b dy.

For regular functions
t L
FJ*UZ]:H H(|x| — //F] x—y,t—T)dydT
0 —L

For singular Fj , wich are applied in physical applications [10], the definition of convolution
should be used [9].

If a rod was at rest and the temperature was constant until the initial time, then the initial
conditions are zero and the formulas are simplified.

u(x,t) H(|x| — L)H (t) = Fy * (711 + By % Ulz+

t

2
+HO Y (-0 [ {0 = 30 Ul o~ (-4 Lt = )+
k=1 0
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Fup(T)UL e (2 — (“1D)FL, ¢ — T)} dr+ (4.6)

+H (t)i(—l)kﬂ/{(qk(r) — g (7)) U2 (x—(—l)kL,t—T,> +

i
I

01U, (x (—1)FLt - T) } dr

0 (x,t)H(t)H (L —|z|) = F «Us + Fy = U+

+c? k“/{ — F0p(T)) U (2 + L, t — 7)+

0
tup(t) U3 0 (x + Lyt — 7 )} dr+ (4.7)

t>/t2 DM (qu(r) = i (1) U (@ = (~D)* Lt -
> (D (anlr) = i) U3 (@ = (-D)FLit —7) +
0

k=1

+0,(T)U3 0 (x + Lt — 1)} dr
Formulas (4.6) and (4.7) determine the displacement and temperature inside the rod from the
known displacements, stresses, temperature, and heat fluxes at its ends.

5. The Green matrix and its Fourier transform over time. To construct matrix of
fundamental solutions of equations of coupled thermo elastodynamics analytically it’s possible
only in Fourier or Laplace transform spaces over time. Fourier transformant over time of Green
matrix Uj(z,t) we constructed in [11]. It is fundamental solution of Eqs (1.1) which satisfied
to radiation conditions.

Its components have the form:

~ Ssgn(x) [ _, [ sinav/Ag
J _ 1 —
Ui (z,w) = 300 — M) {zw/@ < T

”\%ﬁ ) (VAvsina /A - fsmf)} (5.1)

752sgn (cosxf—cosxf) j=12

2(M —

Ug(aj,w) (igln( ))\ o {zwnéj <cosx\ﬁ—

—cosm\/g) — w? <81?1$K\{X sz%{) 5] (5.2)

c2 <\/)\Tsinx\/)\71— @sinx@) 5%} ,7=1,2

Here

A2(w) = 22 {(w +iyn) + ik~ £ \/ (w+i(yn+ 2k—1))* — 4iw02k_1} (5.3)
the roots of the characteristic equation of system, quadratic with respect to £2:
A(g,w) = (€ — ik w)(c*” — w?) —iyngw = (62 = 1) (€7 = \o)
They depend on only three thermodynamic parameters of the medium:
¢, a=n~n, [=ck1
dimension [a] = [8] = [w]. In these options
Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2020, Vol. 131, Ne2
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A2(w) = 2w2 {w—l—z(oH—ﬂ :I:\/w+z a—ﬁ))2—4aﬁ} (5.4)

Their frequency asymptotic behavior is as follows:
a) at w — 00

w? iwf
AL~ 077 A2 2 (55)
b)at w—0:
. 3iw (a+B) iw(a+ B)
A SzmT, AQ ~ T (56)

Riemann surface of the matrix w are univalent, since the values of the components U ,i are
independent of the choice of the sign of the radicals /Aj(w).

The features Ug (r,w) are clearly demonstrated in figure 1, where the calculations of this
matrix are presented for the following conditional parameters: v =0.1,c=1,k=1,n=1 the
real (blue line) and i imaginary part (green line) of each component are shown here

Remark. Matrix U J (z,w) may be used also by solving BVPs of harmonic vibrations by
action of periodic over time external forces and thermo-sources.

6. Laplace transforms over time of Green matrix. To solve non-stationary boundary
value problems, we should use the Laplace transform of the fundamental matrix U7 (x,p), which
is obtained using the connection between the Fourier transform and the Laplace transform in
time (p <> —iw, w <> ip ):

§{sgn(z)
2(A1 = A2)

o (505 ) ()

7(6;sgn (cosa:\/i— coS xﬁ) j=172
1

A2)

Ul (x,p) =

sgn ()
2(A — \2)

; S A blnx
5 o ) 2 sin zv/\1 VA > 5]
X {pn 1 (cosa:\/ 1 — COoS T/ 2) P ( T %

¢ (\/)Tlsin:c\/g— \/)Tgsina:\/);> 5%}, j=12

Uj(x,p) = —

where

Malp) =~ {prat 8 /ot (a9 +aan)

The components U g(m, p) are regular and continuous at the point z =0:

U (+0,w) = U} (0,w) =0, k,j=1,2, (6.1)
But their derivatives
8, U} (x,w) =
(A1 — iwk™1) sgn(zx)
-_— (cosx\/)\l —cosx\/)\g) + cosx\/ Ay —
(A1 —A2) 2

5 (VArsin el VAL = Vgsin fo] Ve ) 6
2(A1 — A2)
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8$[7%(x w) = _53 wr) (\/7S1n || VA — Vg sin 12| \/»)

2(A1 = A2)
: - A
—&)sgn(x) { uz)\ 1c? (cosx\/ —cosxTy/ A ) — 2 coszy/\ }
1—
at this point suffers a break of the ﬁrst kind:
9,UJ (£0,p) = £0,507, 9,03 (£0,p) = +0,5¢28, j=1,2 (6.2)

(the upper sign corresponds to the left limit at zero, the lower right).

Remark. By n =0 matrix U g (z,p) is fundamental for equations of uncoupled thermoelas-
todynamics. In this case its original has be constructed in [12].

7. Laplace transform of boundary value problems solution. Here we consider the
initial boundary value problem with zero initial conditions. By use the property of Laplace
transform of convolution we get Laplace transformants of generalized solution from (4.2)-(4.3):

u(x,p) H(lx| — L) = Fi(z,p) * Uf (x,p) + Fa(z, p) * U (x,p)+
(—1

£ X (UM (- 30 01 = (DML + )0 (o - (DL}
i (—1)51 {(ge — mpi) T2 (& — (DML, p) + 007 (2 — (~1)L,p)}
0 (937292) H (L — |a|) = Fi(z,p) * Uy (2, p) + Fa(w,p) + U (z,p)+
L2 kzl (=D {(py —0k) U3 (x + L,p) + uUs o (x + L,p) } + (7.2)

L (1) {ki( D (e — npiig) 02 (2 — (—1)FL,p) + 5,030 (2 + L,p>}

Here, a dash over a function indicates its Laplace transform.

Using the asymptotic properties of the fundamental matrix U]’f at zero (6.2), from (7.1)-
(7.2) we obtain the system of four linear equations at the boundary points to determine the
Laplace transformants of unknown boundary functions, respectively to considered BVP. It has
the following form:

0,5@(—L,p):(F1*Uf+F2*Uf) +
2

+ (=1 (brp) = 7 0(p) T (~L = (~1)*L,p)+

k=1

)

ik (p)U} o (~L = (<) L.p) p + (7.3)

+Z2: k+1{(Qk( ) + iwniig(p)) U7 (— - (_1)kL’p> +

* +0u(p) 07 (~L = (~1)"L,p) }.

0,53 (L, p) = (Fl*UerFQ*Uf) ot

[\

+2 ) (-1 {(ﬁk(p) —50k(p))

k=1
— rrl k
()0} o (L= (~1)°L,p) } + (7.4)
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2
+ 30 @) — pran() OF (L= (<) L,p) +

k=1
+0u(p)UEs (L= (-1)"L,p) }

—+

0,50 (—L,p) = (F1*021+F2*U22> )

2

+¢2 ) (=DM (Br(p) — ¥0k(p)) U3 (0,p) + ik (p)Us3 2 (0,p) } + (7.5)
k=1

2
+> (=DF (q@w(p) — pnan(p)) Us (—L -~ (—UkL,p) + 01(w) U3 (0, p)

i
I

0,50 (L, p) = <F1 + O + Fy x (72) 4
2
+ > (=DM (r(p) — 10k (p)) U3 (2L, p) + ur(p)Us 0 (2L, p) } + (7.6)
k=1

2
+ 3 (DM @lp) = prin(p) U3 (L= (<) Lop) + 0u(p) U3, (2L, ).
k=1

From this system it is possible to obtain the resolving equations for any of the four BVPs.
8. Resolving equations of BVPs in Laplace transform space. The resolving system
of linear algebraic equations (7.3)-(7.6) is represented in matrix form:

uy Uz
D1 p2 | _
{Alpx§ B b+{and B0 =b (8.1)
l 72
where
{A1} =
05 0 0 0
- (02U11>I _anlz)(QL) _62 11(2.[/,])) (?CQU% - U1271’ )(QL) - 12 (2[17]))
0 0 05 =0
- (C2U21m: _an22)(2L) _C2U21 (2L7p) (§C2U21 - U227x) (2L) - 22 (2L7p)
{42} =
(CQUllax _p’r]UlQ)(,2L) 02011(—2.[/,[)) - (%CQUll - Ulzax )(72[/) 012 (_QLap)
05 0 0 0
(62U217I _an22)(72L) ) CQUQI (_2L)p) - (%CQUQI - U227$) (—2L) U22 (_2Lap)
0 0 0.5 0

b= (Fy«Ul + FaxUP)_p, by=(FyxUf + FxU7) ),
by = (F1#Uy + +F+U3)_p),  ba= (FixUsy + Fax U3y
From this system it is necessary to construct a linear system of algebraic equations for any of
the considered boundary value problems, leaving on the left side terms with unknown boundary
values of the desired functions and transferring them to the right side with the known ones. The
solution of this system is determined by use Cramer method.

After determining the missing boundary functions using formulas (7.1), (7.2), we determine
the displacements and temperature in the rod. To determine thermoelastic stresses, we substitute
the solution into the Duhamel-Neumann law (1.3), where all incoming functions are defined
above. The obtained solutions make it possible to determine the thermally stressed state of
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bar structures with various geometric dimensions and thermoelastic parameters. In this case,
one can study the effect of concentrated heat and power sources on them, described by singular
generalized functions.

As example we present resolving boundary equations of BVP 1. In this case from (1.5) we
know stresses and heat fluxes at rod ends, but (p1,p2,q1,¢2 ) are unknowns. Then we obtain
from (8.1) resolving system of equations (RES 1):

P1 Uy
@ | 01

{A} b (= b+ {B} x i (8.2)
q2 0o

where the components of the matrices A, B are determined through the components of the
matrices A1 and A2 as follows:

A112 A114 A212 A214
A122 A124 A222 A224
A132 A134 A232 A234
A142 A144 A242 A244

Alyp Alyz A21p A2q3
Algr Algz A2y A2o3
Alzy Alsz A231 A2s
Alyr Alyz A24 A243

(P20 + P02,
. (Fs0t+ Bx02) |,
(Fs03+ RxT3) 1.,
(FI;U:; +F2§z722) L,

(8.3)

)

J

9. Problems of periodic vibrations and their solutions. Periodic action of external
vibration source is typical in practice. Their action can be presented in the form of Fourier series
of stationary harmonic vibration which periods are multiply to base period. The solutions of
such problems are determined also as Fourier series:

u(z,t) = Zaje_i“’jt, 0 (x,t) = ije_i”jt
J J

Then for every harmonic of this series we have stationary vibrations BVP by frequency w; .
Using this method we can calculates thermo stress-state state of rod for every harmonics of
this series and solve BVP. It gives possibility to investigate thermoelastic state of rods as at
big oscillation periods and so at small periods, when uncoupled model of thermoelasticity is
insufficient for application.

Let consider a rod fixed at the ends, whose temperature fluctuates with frequency w at the
ends

u(zj,t) =0, 6O(xj,t) =exp(—iwt); j=1,2
It is BVP 1 with RES (8.2).

Figures 2,4,6 (a,b) show the amplitudes of displacements and temperature along the rod
for different frequencies: w = 0 : 1;1;10. The calculations are performed for dimensionless
parameters: vy =1,n=1,k =1,c=4. In this case

In figures Fig. 3,5,7 (a,b) the real (green lines) and imaginary (blue lines) parts of complex
amplitudes of displacements and temperature are depicted, which describe the displacements
and temperature at fixed moments of time, spaced apart by a quarter of the oscillation period:
o t=2mn/w(Ru, RT) and t = 2mn/w+ 7/2w({u,IT),n =0,1,2.

The formation of standing thermoelastic waves has been observed. At low frequencies a
middle of the rod is stationary, and maximum of longitudinal displacements are observed at
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quarter of length from rod ends. Maximum of temperature is in a middle of the rod. At low
frequencies, temperature maximum in a middle of a rod is higher than temperature at its ends.
With increasing frequency, a number of local extrema increases and temperature amplitudes
increases in comparison with its value at rod ends.

The nodal points appear where both displacements and temperature are close or equal to
zero. But extrema of amplitudes of displacement and temperatures are shifted relative to each
other (where the displacements are zero, temperature amplitude maximum is observed).

10. Resonance vibrations of thermoelastic rod. One of the most important of engineer-
ing problems is to determine the spectrum of free vibrations of a thermoelastic rod (resonant
frequencies). As you know, external influences at resonant frequencies often lead to devastating
consequences for structures containing such elements.

To determine the spectrum of thermoelastic vibrations of the rod, one should study the
determinant of RES matrix. Namely, the resonant frequencies must satisfy the characteristic
equation

det (A(L,wg)) =0, k=1,2..

This is a complex transcendental equation because the components of the fundamental matrix
are expressed in terms of trigonometric functions of complex arguments. Its behavior and roots
can be determined only numerically using various standard computer programs. For the system
(8.2), the zeroes of determinant of matrix A2 determine the resonant frequencies at which
time-periodic solutions do not exist

But in figure 9 there is graphs of determinants of matrices A1 and A2. They are plotted,
depending on the frequency w. Det(A2 (w)) does not vanish anywhere. That is, in contrast
to the dynamics of elastic rods, there are no classic resonant frequencies at which stationary
periodic solutions do not exist. Such behavior of determinant of RES matrix is observed for all
considered above BVPs.

However, there is a local minima on these curves. It shows that external action on such
frequencies will cause increasing oscillation of rods, resonances in rod structures.

Table 1 presents the maximum amplitudes of displacements and temperature in the consid-
ered frequency range. With increasing frequency, the amplitude of the displacements increases
sharply, and then begins to fall. The same is observed for temperature. With temperature fluc-
tuations at the ends, the maximum amplitude of temperature fluctuations in the rod increased

by 20 % .
Table 1

w | Umax | T max
0.1 | 0.0022 | 1.001
1 0.032 1.168
10 | 0.443 1.2
100 | 0.28 1.04
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Figure 3. Amplitude (a) of displacements and their real and imaginary parts (b) along the rod:
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Figure 4. The amplitude (a) of temperature fluctuations and its real and imaginary part (b)
along the rod: w=1
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Figure 5. Amplitudes of displacements (a) and temperature (b) over shaft length: w =0.1
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Figure 9. Dependence of the determinants of the matrices Al (a) and A2 (2) resolution system
of equations of frequency

Conclusion. Obviously, we can consider combined problems with one type of boundary con-
ditions at one end of a rod and other at second end, and other asymmetric conditions for a
number of defined functions at rod ends. Constructed here Resulting Eguations System (8.1)
gives possibility to solve 35 BVPs with different boundary conditions by different external ther-
mal and forces action. It needs to set 4 boundary function from 8. Then others 4 are defined
from RES (8.1). You can know 2 arbitrary boundary function from 4 at both rod ends, or 3
from 4 at one end and 1 any boundary function at other ends, or all 4 only at one ends.

Also by v =0 this system describes the dynamics of elastic rods neglecting thermal stresses
but with a glance of velocity of deformation on its temperature.

Note also that formulae (7.1)-(7.2) may be applied for engineering calculations of rods con-
structions for estimating their durability and safety without construction RES and its solving.

This work was supported by the Grant of Ministry of Education and Science of the Republic
of Kazakhstan No. AP05132272 “Boundary value problems of the dynamics of deformable solid
and electromagnetic media and their solving”.
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JI.A. AnekceeBa, M.M. AxmeTr>kaHoBa
Mamemamuxa sicorne mamemamuraivyy modeadey uncmumymot, Aamamo, Kazaxeman

TepmocepniMai e3ek JUHAMUKACBIHBIH IIIEKTIK ecenrepiHiy >kannbuiama QyHKOusIap saici

Annoranusi:  Baitanbickan TepMocepmiMzi MOZeIiH maiifjajlaHa OTBIPBINI, TEPMOCEPHIMII ©3€K JIUHAMUKACHIHBIH,
CTaI[MOHAPJIBIK, €MeC KoHe TepbesticTi meKTik ecenTepinin memnry yimin »xannansama (yHkusaaap oaici o3ipaenai. CokKbI
JKYKTeMeJslepi MeH »KbLIy afbIHIapbl OCEPiHeH KypbUIbIMIApAa Iaiijia OOJIaThIH TEPMOCEPIIMII COKKBI TOJIKbBIHIAPbI
KapacTeIpblLabl.  OJapabiy, GarbITTapbIHBIH IMapTTapbl ajdblHABL. COKKBI TOJIKBIHIAPBIH €CKepe IIeKTIK eCenTepiHiH
KAJFBIBABIFBL  JI9JIEJIIEH ], ITlexTik ecenTepiHiH KeH KJlacCTap AaHAJUTUKAJBIK, IIelmiMIepiH aHbikTay yimin MO
Herizinge osapAblH, aarebpaJsiblK IIEILy TEHAeyJIep Kyheci KypacTeIppuimbl. Typui Tumreri »KbULy Ke3AepiHiy »koHe
KYII OCepiHiH ©3€eK JUHaMUKAChl 3epTTese/li, COHBIH iIIiHJe CHHIYJISAPJIBl KajbliaMa (GOYHKIUAAJIAPbIH CHIATAUTbIH,
UMIIYJIbCTI KOHIIEHTpaUUsJIaHFAH KO3Iep OcepiH Momengeyre MyMKiHmik Oeperi. Cranuonapsisl  Tepberic kesimmge
Oip IIEKTIK ecenTep IIENIiMiH KOMIBIOTEDPJIK iCKe achIpy 2Kyprisijiefi, TOMEHIi »K9HE >KOFaprbl KUIJIIKTEpJeri e3eKk
TEPMOJUHAMUKACHIH €CEIITEY/IIH CAH/bIK SKCIIEPUMEHTTEPIHIH HoTHKejiepi Kopceriai. Ochl memimMaep MeH ajJropuTMmep
©3€K KyPbUIBIMJIAPbIHBIH OEPIKTIK KacueTTepiH H6araJjiay YIINiH OJlap/iblH WHXKEHEPJIIK ecenTeyliep YIIiH KOJIJaHybl MyMKIiH.

TyiiiH ce3aep: TepMOIIACTHUKA, O3€K, IIIEKTIK ecell, KepHeyl - nedOpMAaIUsIIbIK, KYi, 2KaanblaMa QyHKIAAIAp 97ici.

JI.A. AnekceeBa, M.M. AxmeT>kaHoBa
Hremumym mamemamury U MAmemMamuveckozo modesuposarus, Aamamot, Kasaxcman

Metoa 06001eHHbIX DYHKIUMHI B KPAaeBbIX 3a4a4aX AUHAMUKUA TEPMOYNPYTrOro CTEP>KHs

Annoranus: Paspaboran meron obmmx dynxnmit (MO®) mis penienus HECTAIIMOHAPHBIX U BUOPAIMOHHBIX KPAEBbIX
3a/la4 JUHAMHUKU TEPMOYIPYIOrO CTEPXKHSI C HCIOJb30BAaHUEM MOIEN CBI3aHHOW TEpMOYIPYrocTH. PaccMOTpeHbl
TEPMOYIIPpYTHUe yAAapPHbIE BOJIHBI, BOZHUKAIOIIME B TAKUX KOHCTPYKIMSIX IOJ JIEHCTBHEM YIAPHBIX HAIPY30K U TEILJIOBBIX
notokoB. [loJsiy4dens! yciaoBusi Ha ux ppoHTax. JlokazaHa € IMHCTBEHHOCTh IIOCTABJIEHHBIX KPAEBBIX 38/1a9 C yYETOM yIapHbBIX
Bosin. Ha ocmoBe MO® mocrpoena cucrema aarebpandecKux Paspellaominx yPaBHEHHI [JIs IMHPOKOrO KJIAacCa KPAeBbIX
3a/1a4 JJIsl ONIpeJIeJIeHUs] UX aHAJUTUYIEeCKUX perteHuii. Vcciaenyercs [uHaAMUKa CTEPXKHS MO IeCTBUEM CUJI U KICTOYHUKOB
TeIIa Pa3jIMdHOrO THIA, B TOM YHCJIE€ OMUCBIBAEMBIX CUHIYJISPHBIMU OOODOIIEHHBIMU (DYHKIUSIMU, KOTOPBIE ITO3BOJISIOT
MOJIEJIMPOBATH BO3/IEMCTBUE MMITYJIbCHBIX KOHIIEHTPUPOBAHHBIX WMCTOYHUKOB. IIpoBejieHa KOMIIBIOTEPHAsI peasin3alusi
pellleHuil OHOI KpaeBOU 3a/a4u IIPU CTAIMOHAPHBIX KOJIEOAHUSIX, NMPUBEIEHBI PE3yJIbTATHl YUCIEHHBIX YKCIEPUMEHTOB
pacdeTra TEPMOJMHAMHMKU CTEPXKHS Ha HU3KMX U BBICOKUX dYacToTax. JlaHHBbIE pENIeHHsI U AJI'OPUTMBI MOTYT OBITH
IIPUMEHEHBI JIJIsi MHXKEHEPHBIX PACYETOB CTEPXKHEBBIX KOHCTPYKIUN JIJIsI OIEHKU UX IIPOYHOCTHBIX CBOWCTB.

KiroyeBble C€JIoBa: TEPMOIIACTUYHOCTb, CTEPXKEHb, KPaeBble 3aJ1a4i, HAIPSKEHHO-1e(OPMUPOBAHHOE COCTOSHUE,
MeTOoJ, 00X (DyHKIIHIA.
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