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1. Introduction

Let D C R? be a bounded Lipschitz domain. Consider the diffusion elliptic equation
—div(aVu) = f in D, wulpp = 0, (1)

for a given fixed right-hand side f and spatially variable scalar diffusion coefficient a. Denote
V := H}(D) - the energy space and V' := H~1(D). If a satisfies the ellipticity assumption

0 < @min < a < apax < 00,

by the well-known Lax-Milgram lemma, for any f € V', there exists a unique solution u € V/
in weak form which satisfies the variational equation

/aVu'Vvda: = (f,v), YveV
D

We consider diffusion coefficients having a parametrized form a = a(y) , where y = (y;)72; is a
sequence of real-valued parameters ranging in the space R . Here, the parametric dimension m
may be arbitrarily high. The resulting solution to parametric and stochastic elliptic PDEs map
y — u(y) acts from R™ to the space V. The objective is to achieve numerical approximation of
this complex map by a small number of parameters with some guaranteed error in a given norm.
Depending on the nature of the modeled object, the parameter y may be either deterministic
or random. In the present paper, we consider the so-called lognormal case when the diffusion
coefficient a is of the form

a(y) = exp(b(y)), by) =Dy, (2)
j=1
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where the y; arei.i.d. standard Gaussian random variables and 1; € Lo (D) . Parametric PDEs
are of great interest in Uncertainty Quantification for modelling many complex phenomena
involving high-dimensional or infinite-dimensional parameters which may be deterministic or
stochastic. We refer the reader to [3,4,9,13, 14| and references there for different aspects in
approximation for parametric and stochastic PDEs.

In order to study fully discrete approximations of the solution u(y) to the parametrized
elliptic PDEs (1), we assume that f € Ly(D) and a(y) € WL (D), and hence we obtain that
u(y) has the second higher regularity, i. e., u(y) € W where W is the space

W:={veV : Ave L*(D)}.
equipped with the norm
[v]lw = HAUHLZ(D)a
which coincides with the Sobolev space V' N H?(D) with equivalent norms if the domain D has
CY! smoothness. Moreover, we assume that there holds the following approzimation property
for the spaces V' and W : there are a sequence (V},)22, of linear subspaces of V' with dimension

< n,asequence (P,)>, of linear operators from V into V,,, a constant C' > 0 and a number
a > 0 such that

[1Pa(o)llv < C, o= Pau)llv < Cn™vllw, neNo, veW. (3)

Based on spatial and parametric aproximability, namely, the approximation property (3) in
the spatial domain and weighted f5 -summability of the V' and W norms of Hermite polynomial
expansion coefficients obtained in [1,2], we explicitly constructed linear non-adaptive methods of
non-fully and fully discrete polynomial interpolation approximation for parametric and stochas-
tic elliptic PDEs with lognormal inputs (2), and proved corresponding convergence rates of the
approximations by them. The linear non-adaptive methods of non-fully and fully discrete poly-
nomial interpolation approximation are sparse-grid collocation methods. The Smolyak sparse
grids in the parametric domain are constructed from the roots of Hermite polynomials or their
improved modifications. Moreover, the fully discrete polynomial interpolation approximation
can be represented in the form of a multilevel approximation.

Let X be a Hilbert space, u(y) a positive measure on R™ and 0 < p < oo. The u(y)
induces the Bochner space L,(R™, X, 1) of p-measurable mappings v from R™ to X equipped
with the (quasi-)norm

1/p
[0ll L, ®m x ) = o, )% duly) |
an

with the change to ess sup norm with regard to pu(y), when p = oco. We make use the
abbreviation: L,(R™,X) := L,(R™, X, ) if p(y) is the Lebesgue measure on R™ .
Let ~(y) be the probability measrure on R with the standard Gaussian density:

1

dy(y) = g(y)dy, g(y) = me’ym.

With some abuse we define tensor product measure y(y) on R™ as

dy(y) = ®g(yj)dyj = g(y)dy, g(y) = ®g(yj)-

Notice that u(y) belongs to the space L,(R™,V,v) for 0 < p < oo [1], and there holds the
expansion by the Hermite series

u(y) = Y usHa(y), us€V

seNg?
converging in Lo(R™, V., v), where
— . A m
s - si\Yj5)» s +— s ) 0>
Hs(y) Hs(y;), u(y) Hs(y)dy(y), seN
jeN "
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and (Hy)32,, is the system of univariate orthonormal Hermite polynomials.

2. Lagrange interpolation in parametric domain

For every n € Ng, let Y,, = (yn:x)j_, be a sequence of points in R such that
—00 < Yn;0 << Ynn—1 < Yn;n < +00; Yo,0 = 0.

For a function v on R taking values in a Banach space X , we define I,(v) for n € Ny by

n

n
Y —Ynyj
In(v) = Zv(yn;k)gn;ky en,k(y) = H %a
k=0 j=0, j#k yn;k ym]
as the unique Lagrange polynomial interpolating v at y. . Notice that I,(v) is polynomial
of degree < n and I,(p) = ¢ for every polynomial ¢ of degree <mn.
Let

A (Yn) = sup ||In(v)\/§||Loo(R)
1vv/9l Loo (r) <1

be the Lebesgue constant. We want to choose sequences Y;, so that for some positive numbers
7 and C, there holds the inequlity
M(Yn) < (Cn+1)", Vn e N (4)

We present two examples of Y;, satisfying (4).
The first example is the strictly increasing sequence Y,* = (y..)r_, of the roots of H, 1.
Indeed, it was proven by Matjila and Szabados [11,12,15] that

M) < Cln+1)YS neN,

n
for some positive constant C' independent of n (with the obvious inequality Ag(Yy) < 1).
Hence, for every ¢ > 0, there exists a positive constant C. independent of n such that
M (V) < (Con+1)Y5 wn e N,. (5)

The inequality (5) can be improved by the “method of adding points" suggested by Szabados
[15] (for details, see also [10, Section 11]). More precisely, for n > 2, he added to Y, , two points
+&,-1, near £a,_1(g), which are given by the condition |H,_1,/g[({n—1) = HHn_l\/gHLw(R) )
By this way, he obtained the sequence Y;* := {—&u,¥n—20,""" ,Yn—2.n-2,&n} satisfying the
inequality

M(Yy) < Clog(n—1) (n>2)
which yields that for every € > 0, there exists a positive constant C. independent of n such
that

M(YF) < (Con+1)°, V¥n € No.

For a given sequence (Y,)22,, we define the univariate operator Al for n € Ny by
A}z = In — In,
with the convention I_; = 0. We introduce the operator AL for s € NJ* by
A(v) = QAL (v)
JEN

for functions v defined on R™ taking values in the space V , where the univariate operator

Alsj is applied to the univariate function v by considering v as a function of variable y; with
the other variables held fixed.

3. Collocation weighted approximations

For convenience, we introduce the convention W' :=V and W? := W . Our constructions of
non-fully and fully discrete approximations are based on the approproperty (3) and the weighted
{9 -summability of the series (||us|lwr)seny, 7 = 1,2, in the following lemma which has been
proven in [1| for r =1 and in [2] for r = 2.
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Lemma 1. Let v = 1,2. Assume that the right side f in (1) belongs to H"2(D), that the
domain D has C"™=%1 smoothness, that all functions 1; belong to W™=1°(D). Assume that
there exist a number 0 < g, < oo and a sequence p, = (pr.j)jen of positive numbers such that

(Prj)jen € Lg,(N) and

m
E :Pr;jhpj’ sup E :pm‘Dawﬂ <000
X <p_

- Lo2(D) i Lo2(D)

Then for any n € N, there exists a constant C < oo independent of m such that

. S ’
> (ol <0 with oty= 30 (5)e

seNg" 18" oo () <1

We introduce the non-fully discrete polynomial interpolation operator I, for a finite set

A C NI by
Sy
seA
Denote by |G| the cardinality of a set G, and by I'(A) the grid of interpolation points in
the operator I, .

Theorem 1. Let the assumptions of Lemma 1 hold for the spaces W' =V with some 0 < q; <
2. Assume that (Yn)nen, @S a sequence such that every Y, satisfies the condition (4) for some
positive numbers T and C'. Define for £ >0
AE) = {s € NP+ ol < £},
Then for each n € N there exists a number &, such that |I'(A(&,))] <n and

I (= Tage,) ) VGl Lo @@mvy < O~ /0712), (6)

The constants C' in (6) is independent of w, m and n.

For a finite subset G in Np x N, denote by V(G) the subspace in La(R™,V,v) of all
functions v of the form

Z v, Hg, UkEVQk.
(k,s)eG

Let the approximation property (3) hold for the spaces V' and W . For k € Ny and v € W,
we define

5k(v) = P2k (1}) — P2k71(v), keN, (SO(U) = Po(’U).
We introduce the operator Zg from W to V(G) for a given finite set G C Ng x Nj* by

IGv = Z (5kA£(U)
(k,s)eG
for functions v defined on R™ taking values in the space W .

Notice that Zgv is a linear non-adaptive method of fully discrete polynomial interpolation
approximation which is the sum taken over the indices set G, of mixed tensor products of dyadic
scale successive differences of “spatial" approximations to v, and of successive differences of their
parametric Lagrange intepolating polynomials. It has been introduced in [5] (see also [6]).

Theorem 2. Let the approximation property (3) hold. Let the assumptions of Lemma 1 hold
for the spaces W' =V and W2 =W for some 0 < q < qo < 0o with q1 < 2. Assume that
(Yn)nen, s a sequence such that every Y, satisfies the condition (4) for some positive numbers

7 and C'. Define for £ >0

Gle) = {(k,s) € No x Nj* : 202, < ¢} if o <1/qp—1/2;
{(k,s) € Ng x N : ofly <&, 2"‘q1kag;ls <&} ifa>1/gp—1/2.
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Then for each n € N there exists a number &, such that |G(&,)| <n and

I (v = Zae) ) VIl Lo@m vy < Cnm @D, (7)
The rate « is given by (3). The rate B is given by

1 1 1 1
(N L
@1 2) a+d oo
The constants C in (7) is independent of w, m and n .

Observe that the approximant Zg, u in this theorem can be represented in the form of a
multilevel approximation to u with k(n) levels:
k(n)
Lot = D Oula, 6t
k=0
where k(n) := |logy&,| and for k € Ny and £ >0,

AR(E) = {s e Ny : 0F, <27F¢} if o <1/qp—1/2;

YT s eNp ot <, ol <27k¢) ifa>1/gr—1/2.
The sequence {Ak(in)}z(:no) is nested in the inverse order, i.e., A (&) C Ax(&n) if &' >k, and
Ao(&n) is the largest and Ay (€n) = {0} .

Further, the fully discrete polynomial interpolation approximation by operators Zg(e,) is a
collocation approximation based on the finite number [I'(Ao(n))] < D seng(e,) [I721(255+1) of
the particular solvers u(y), y € I'(Ag(&n)), where T'(Ao(€n)) = Usenge)l'ss T's = {¥s_eim
ec€Eg; mj =0,...,5; —ej, j € N} and Eg denotes the subset in Ni* of all e such that e; is
Lor0if sj>0,and e; is 0 if s; =0, and Ygpp, = (Ys;;m; ) jeN -

Infinite-dimensional parametric counterparts of our problems have been studied for non-fully
[7,8] and fully [7] discrete collocation approximations. In [7], the same problem of non-fully
and fully discrete polynomial interpolation approximations has been investigated. There, the
difference is that m = oo and the approximation error is measured by the (quasi-)norm of
L,(R*,V,~) with 0 < p <2. In particular, from |7, Corollary 5.1 and Theorem 5.2| it follows
that under the hypothesis of Theorem 1 or of Theorem 2, we have ||u — Iy, ullL,@®m v,y <
Cn~Ma=1/2) or |ju — Lo ullL,mm, vy < Cn” min(a.f) - respectively, with the same ¢; and
a,f asin (6) and (7), and constants C' independent of v, m and n.
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duuab 3yHr

Unpopmamuranvr, mexrnosozusasap uncmumymot, Boemmnam yammuo yrnusepcumems, Cyan Txrou 144, Kaysad,
Xanoti, Bvemnam

JlorHopmaJsianfaH aJiFAlIKbl M3JIiMeTTepMeEH GepiiireH nmapaMerpJii 3JIMOTUKAJBIK, Aep6ec TybIHAbLIbI
nuddepeHIuaNabIK TeHJAeyJep YIIIiH KeneJeM/ll KOJJIOKAIUJIbIK, CaJMaKThbl Ky bIKTayJiap

AnHoTauusi: JlorHOpMasiaHFaH aJFAIIKBl MaJIIMETTEpIMEH GepijireH mapaMeTpJii YKOHE CTOXACTUKAJIBIK, SJIUITUKAJIBIK
nepbec TybIHABUIBI JguddepeHIuanIblK TeHJeyJIep VIIH TOJIBIK KOHE TOJIBIK €MeC JUCKPETTI ITOJIMHOMMAJIIBI
MHTEPIIOJIANUSIIBIK CaJIMaKThl ANIPOKCUMAIUSIHBIH, CBHI3BIKTBI Oeiiimjiesimeres ojicrepi Kpipbuirad. Ocbl 9jicTepmeH
JKYBIKTAy KBUIJAMJBIKTapbl AJbIHFAH. DyH/a CHpeTiNreH KoJuloKanusl djicrepi Kosgaubuiaabl. CoHbIMEH Karap,
TOJIBIFBIMEH JIUCKPETTI 9JIiCTEP/l KOIJIeHTell »KybIKTay 9icTepi Jen KapacTbipyra 6osafbl. CMOJISIKTBIH CHUDETiIreH
MHTEPHOJIANUSIIBIK  TOPJIAPbl HapaMeTpJi ObJbICTap/a DPMHUT NOJMHOMIAPBIHBIH, HEMECE OJIAPJABIH KEeTLJIipiireHn
Mo upUKAIUIaPBIHBIH TYOipJepiHeH KbIpaCThIPHIIFAH.

TyiiiH ce3zmep: KemesmeMmzl KybIKTayJlap, HapaMeTpJli »KOHE CTOXACTUKAJIBIK SJIUITUKAJBIK J1epOec TyBIHIBIIbI
nuddepeHuaNIbIK TeHIeyJIep, JIOTHOPMAaJaHFaH aJIFalllKbl MaJIMeTTep, KOJIIOKAIusl 9Jici, GeiliMaesMereH cajaMaKThbl
MOJIMHOMUAJIABI UHTEPIOJISIUJIBIK, XKYBIKTAYJIap.

HAunap 3yHr

Hremumym ur@opMatuoHHolr mexrrosozuli, Bvemuameruts nayuornarorowd yrusepcumem, Cyan Txrou 144, Kaysad,
Xanoti, Bbemnam

BbICOKOpaBMeprIe KOJIJIOKaIlMOHHbIE BECOBbIE npnﬁnnx(eﬂna AJIsA ITapaMeTpUYYeCKHUX JINIMIITUYEeCKUX
ypaBHeHnﬁ B YaCTHBIX IIPOU3BOAHBIX C JIOTHOPDMAJIBHBIMU BXOAHBIMU JaHHBIMUW

Annoranus: Paspaboranbl inHeiHbIE HEAJAITUBHBIE METO/IBI JIJIsi HEIIOJIHOM U IIOJTHOM JUCKPETHOH IHOIMHOMHUAJIBLHOM
MHTEPIIOJIANNY B BECOBBIX IPUOIMKEHUAX JJIs IAPAMETPUIECKUX U CTOXACTUIECKUX SJIIUITUIECKUAX YPABHEHUN B YACTHBIX
NIPOU3BOJHBIX C JIOTHOPMAaJIbHBIMU BXOHBIMU JAHHBIMH H yCTaHOBJIEHBI CKOPOCTHU UX CXOAUMOCTH. Hammm MeToabl SBJIAI0TCS
KOJJIOKAIIMOHHBIMHU METOIAMU PA3PEKEHHBIX CETOK. Bojiee TOro, MOJIHOCTLIO AUCKPETHBIE METOALI MOXKHO PAcCMaTpPUBAThL
KaK MHOIOYPOBHEBBIE METO/bI NPUOIMKeHUs. Pa3perkeHHble HHTePIOJANMOHHBIe ceTKM CMOJIsIKa B ITapaMeTPUYecKO
00J1aCTH IIOCTPOEHBI U3 KOPHEH IIOIHHOMOB DPMUTA UM UX YJLIyUIIEHHBIX MOAUMUKAIAN.

KirroueBble cji0Ba: MHOrOMEpPHbIE MPUOJINKEHNS, TapAMETPUYECKAE U CTOXaCTUYECKUE SJIUNTHYECKIE YPaBHEHUs B
YJaCTHBIX IPOU3BO/HBIX, JIOTHOPMAaJIbHBIE BXOJHbBIE JaHHbIE, METO/I, KOJIJIOKAIuN, Hea I JallTUBHbIE BeCOBbIE ITOJIMHOMHAJILHBIE
MHTEPIIOJIALNOHHBIE TPUOJIIKEHNUS.
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