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Аннотация. В статье изучается ставшая классической с середины 70-х годов ХХ
века задача Теории вероятностей, известная как «Парадокс Монти Холла». Она
иллюстрирует различие между субъективным восприятием случайности и объективными
математическими доказательствами, подтверждаемыми соответствующими вычислительно-
статистическими экспериментами. Проведён подробный логический анализ интуитивного
восприятия решения задачи, рассматриваемый как еще один вариант описания когнитивного
диссонанса, когда даже научно обоснованные факты не могут изменить точку зрения человека
со своим сложившимся естественно-научным восприятием действительности и математическое
обоснование оптимального выбора приза игроком, да еще в двух теоретико-вероятностных
интерпретациях. Каждая из них присоединяется к известным теоретико-вероятностным
выводам, которые, в очередной раз, подверглись статистической проверке при помощи
численных экспериментов.

Здесь особенность состояла в том, что в дополнение к известным теоретико-
экспериментальным выводам, полученным применением ставших классическими методов
Монте-Карло (Mersenne Twister, PCG) методов квази Монте-Карло с уточнениями типа
Sobel, Halton, Faure, Niederreiter с малыми дискрeпанcами и Линейным конгруэнтным
генератором с локальными оптимальностями, вычислительные процедуры выполнены с ранее
неиспользованными генераторами случайных чисел – авторскими алгоритмами Линейного
конгруэнтного генератора в неулучшаемой редакции и метода квази Монте-Карло со
сверхэкономными в заданиях сетками Коробова с малыми знаменателями p (в том смысле,
что координата ak

p узла сетки мощности p со знаменателем p и есть «малое» в условиях
возможного, тогда как в случайных алгоритмах в десятичных дробях нет ограничения длины
по отношению к p ).

Проведенные вычисления показали, что и эти оба алгоритма случайности подтверждают
статистическую регулярность в приближении к теоретической вероятности выигрыша как
при сохранении игроком своего выбора, так и при переходе на оставленную ведущим
закрытую дверь в процессе увеличения числа испытаний – количества игр (что можно
интерпретировать и в обратную сторону как подтверждение качества примененных авторских
датчиков случайности).
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Введение. Интрига игры «Парадокс Монти Холла» состояла в том, что в возможно малом в
три шкатулки с одним призом в них вероятности 1

3 и 2
3 в малом количестве демонстрационных

испытаний плохо различимы, к тому же здесь действует психологический фактор: негативное
последствие, вызванное бездействием, причиняет меньшее сожаление, чем вызванное каким-
либо действием, мол старался на собственное поражение.

Теория вероятностей и математическая статистика позволяют выявлять скрытые случайные
закономерности в ситуациях, где интуитивные ожидания человека иногда оказываются
ошибочными (под термином «случайность» понимается отсутствие детерминистической
регулярности). Одним из показательных примеров подобного противоречия между
интуицией и строгим математическим рассуждением является Парадокс Монти Холла
– задача, получившая широкую известность благодаря телевизионной игре «Let’s Make
a Deal» и последующим математическим дискуссиям (см., напр., [1]-[7]). Несмотря
на простоту формулировки, данный парадокс на протяжении десятилетий вызывал и
продолжает вызывать оживлённые споры среди любителей науки, преподавателей и студентов,
став классическим примером «когнитивного конфликта» между вероятностной логикой и
человеческим восприятием случайности.

Актуальность исследования обусловлена тем, что парадокс Монти Холла служит
эффективной иллюстрацией фундаментальных принципов вероятностно-статистического
мышления, изучения действительности на основе моделирования и последующей
экспериментальной проверки возникших случайных событий. В рамках активного внедрения
цифровых технологий в образование и научные исследования особое значение приобретают
методы компьютерного моделирования, позволяющие эмпирически подтвердить теоретические
результаты. Проведение статистической проверки парадокса с использованием различных
генераторов случайных чисел открывает возможности для анализа не только самого явления,
но и качества вероятностных моделей, лежащих в основе оптимальных решений в различных
проблемах всевозможной действительности.

Научная новизна данной статьи заключается в том, что в ней выполнено численное
моделирование парадокса Монти Холла с применением альтернативных датчиков случайных
чисел, ранее не использовавшихся в подобных исследованиях. Именно, для имитации
случайных выборов применены линейный конгруэнтный генератор и метод квази Монте-Карло
собственного авторского производства, что позволяет подтвердить результаты, полученные при
использовании иных случайных и квази случайных последовательностей. Такие случайные
эксперименты в совокупности обеспечивают более глубокое понимание статистической
устойчивости вероятностных закономерностей и демонстрируют, как различные способы
генерации случайности влияют на распределение результатов и характеристик сходимости
частот к теоретическим вероятностям.

Статья организована следующим образом. Бытового мышления рассуждениям, логически
приводящим к равной вероятности выигрыша игроком приза независимо от следования
своему выбору или переходу на выбор ведущего посвящен §1. Обоснования чего основаны на
известном со средней школы классическом определении вероятностей, в котором вероятность
каждого элементарного события-исхода эксперимента равна числу 1

количество исходов эксперимента .
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В игре «Парадокс Монти Холла» имеются три двери, за одной из которых находится
автомобиль, за другими по одной козе и обо всем этом знает ведущий. Игра начинается с
вероятностной модели из трех дверей с одним призом, в которой сначала в действии только
игрок – выбирает одну дверь из трех с целью выигрыша авто, называемую «Первоначальный
выбор игрока», согласно классическому определению имеющий вероятность 1

3 . Затем вступает
в игру Монти Холл, для продолжения игры оставляя дверь «Первоначальный выбор игрока»
и из двух остальных дверей открывает одну дверь за которой коза, оставшуюся дверь назовем
«Выбор ведущего». Таким образом, после вступления в игру ведущего, в игре остаются две
двери «Первоначальный выбор игрока» и «Выбор ведущего», за одной из которых находится
авто. Тем самым, игра находится в новой вероятностной модели, где две двери, за одной
из которых без предпочтения друг другу находится авто, которые согласно классическому
определению имеют равную вероятность выигрыша 1

2 . Таким образом, нахождение авто
за каждой из дверей «Первоначальный выбор игрока» и «Выбор ведущего» имеет равную
вероятность 1

2 , что приводит к выводу, что игрок с равными шансами на выигрыш может
остановиться на своем выборе или же может перейти к выбору ведущего. Именно в этом и
заключается называемое «Выбор по интуиции» решение «Парадокса Монти Холла».

Авторы данной статьи в теории вероятностей следуют принципу, что в учебной литературе
и на занятиях в каждой задаче должно быть построено вероятностное пространство (Ω,F , P )
в полном содержании – это для того чтобы понимать саму вероятностную идеологию,
тогда как в применениях можно использовать только возникающие в процессе решения
задачи события и их вероятности. Следующие §2 и §3 посвящены двум интерпретациям
построения вероятностного пространства игры Монти Холла, приводящим к вероятностям 1

3

и 2
3 выигрыша приза соответственно при сохранении игроком своего выбора и при изменении

выбора на оставшуюся закрытой дверь. Кроме того, в §2 описан алгоритм проведения
численного эксперимента.

В §4 приведены два датчика авторских случайных чисел.
Линейный конгруэнтный генератор с более чем 50-летней историей под названием

«Спектральный критерий» от Дональда Кнута с постановкой задачи в 10 строк текста,
которая полностью решена в 10-ти строках ответа (см. [8]-[9]). Задача состоит в нахождении
волшебных-магических целых положительных чисел a и N с неограниченно растущим N
среди всех возможных, в ответе выписаны три явно подбираемые системы пар, дающие
неулучшаемый порядок определяющего случайность показателя, последний четвертый случай
показывает потерю свойства случайности, все это в практическом итоге выписывается в одну
строку прямого нахождения искомых чисел.

Метод квази Монте-Карло представлен построением на основе алгебраической теории
чисел оптимального алгоритма нахождения случайных чисел со свойством сверхсжатия
информации, когда N искомых числовых показателей вычисляются за порядка NlnlnN
элементарных арифметических операций и отдельно выписан метод вычислительного поиска
тех же случайностей, – все со свойсвом с неулучшаемой в степенной шкале величиной
дискрепанса, меры наибольшей разбросанности N точек в единичном кубе.

Вообще, в процессе математического изучения действительности, по-видимому, всегда
нужно различать ее математическую модель и экспериментальное подтверждение или
неподтверждение полученных теоретических выводов, причем и в обратном направлении
равнозначно. Последующий §5 посвящен подтверждению статистической регулярности
выигрыша приза в игре «Парадокс Монти Холла» при стратегиях – игрок остается при
своем первоначальном выборе либо меняет выбор на оставшуюся закрытой дверь, понятно,
независимо от вероятностных моделей, которые имеют одни и те же обсуждаемые вероятности.
И, наконец, "Заключительные замечания" о перспективах тем данной статьи.

§1. Еще раз про «Парадокс Монти Холла» в русле бытового мышления. Такое
название носит вероятностного содержания игра на американском телешоу «Let’s Make a Deal»
(Давайте заключим сделку) в честь ведущего этой передачи. На сцене три одинаковые двери,

Л.Н. Гумилев атындағы ЕҰУ хабаршысы. Математика, компьютерлiк ғылымдар, механика сериясы, 2025, Том 152, №3
Вестник ЕНУ им. Л.Н. Гумилева. Серия Математика, компьютерные науки, механика, 2025, Том 152, №3

32



А.Ж. Жубанышева, Н.Ж. Наурызбаев, Г.Е. Таугынбаева, К.Б. Нуртазина, Н.Темиргалиев

за одной – авто, за двумя другими – козы. В шоу участвуют ведущий и игрок, цель последнего,
разумеется, в выигрыше авто. Монти Холл, ведущий шоу, который знает, где находится авто,
предлагает игроку выбрать одну из дверей. Первое действие состоит в выборе игроком двери,
которая остается закрытой, то будет в дальнейшем «выбор игрока». Во втором действии
шоу выбор производит ведущий, из двух оставшихся дверей открывая дверь, за которой коза,
для точности речи, оставшуюся закрытой дверь здесь и всюду ниже будем называть «выбор
ведущего». В своих действиях ведущий подчиняется следующим правилам:

– Монти знает, за какой дверью находится авто, и, как следствие, за какими дверями
находятся козы, но без их персонификаций, что, конечно, не имеет значения: авто – выигрыш,
коза – проигрыш.

– Монти всегда открывает одну дверь, дверь за которой скрывается коза.
– Монти никогда не открывает дверь, которую игрок выбрал изначально (что теоретически

возможно, если за дверью, выбранной игроком, коза, о чем знает ведущий, и потому может
открыть как дверь с козой, но предусмотрен запрет).

– Если Монти может открыть более одной двери, не нарушив первые два правила, это когда
игрок выбрал дверь с авто и потому ведущему известно, что за оставшимися двумя дверями
козы, то он выбирает свою дверь без предпочтения какой-либо из них случайным образом (что
на языке Теории вероятностей означает «с вероятностью 1

2 »).
Особо отметим, что игрок в этих двух своих выборах сохраняет шанс выигрыша – авто либо

за первоначальном выбором игрока, либо за выбором ведущего. Действительно, если бы они
оба были проигрышными, то авто оказалось бы за дверью, которую надлежит открыть Монти
Холлу, что невозможно – нельзя открывать дверь с авто.

После того, как Монти откроет свою дверь, он предлагает игроку новый выбор – остаться с
первоначальным выбором или переключиться на другую неоткрытую дверь, в этот итоговый
раз после второго выбора игрока ведущий открывает указанную игроком дверь, - с авто или с
козой. Именно здесь наступает основополагающая интрига игры: как игроку максимизировать
свои шансы в вероятностных показателях на выигрыш автомобиля?
Бытового мышления рассуждения такие: ведущий всегда в итоге убирает одну

проигрышную дверь, и тогда для игрока шансы появления автомобиля за двумя неоткрытыми
становятся равны, – «аргумент 50 на 50» вне зависимости от сохранения первоначального
выбора или перехода на выбор ведущего.

То же в вероятностных терминах звучит так: «Как только Монти открывает свою дверь, в
игре остаются две двери. Поскольку они с равной вероятностью 1

2 будут выигрышными, не
имеет значения, переключается игрок или нет».

Таким образом, так называемый «здравый смысл» решает, что в игре на выигрыш авто
шансы игрока остаться в своем первоначальном выборе или перейти на другую дверь,
оставленную закрытой ведущим, одинаковы – с равной вероятностью для нахождения авто
игрок может выбрать любую из двух оставшихся в игре.

Здесь снова обратимся к основам Вероятностной науки – отсутствие «детерминистической
регулярности», что налицо в виде неизвестности до второго открытия двери местонахождения
авто из трех возможных, поэтому надлежит убедиться в наличии «статистической
регулярности».
Изоморфизм шоу Монти Холла. В целях обеспечения возможности воспроизводства

игры в камерных условиях изменим двери на шкатулки, авто на шарик, а коз уберем вообще.
Здесь заметим, это в Математике есть изоморфизм, когда три двери и за ними две козы

могут быть заменены на какие угодно три одинаковых предмета с тремя признаками – одним
и отличными от него двумя идентичными. В частности, три шкатулки с шариком в одной из
них и пустыми двумя, или же три карты разных мастей, две из которых приняты за копии
одного и того же, и тогда игра Монти Холла с любой из них переносится на все такие же.

Теперь обратимся к проверяемой реальности.
Статистика шоу Монти Холла. Как оказалось, нет доступной публичной точной

статистики по реальному игровому шоу "Let’s Make a Deal" – например, сколько сезонов или
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эпизодов было, сколько раз игроки переключались или оставались при первоначальном выборе,
а также сколько раз выигрывали автомобиль или козу. Такое детальное распределение не
публиковалось официально и, скорее всего, не фиксировалось в виде открытых данных. Тем не
менее, вполне выполнимые, что называется «в домашних условиях», со шкатулками-шариком,
картами и т.п., показывают следующие проценты выигрыша: поменявшие первоначальное
решение – это около 66%, на оставшихся при своем выборе приходится около 34%, что в шкале
k
3 из трех дверей есть соответственно 2

3 с k = 2 и 1
3 c k = 1 .

Так что приведенные в решении рассуждения, какими бы логичными они не казались,
не подтверждаются практикой: в рамках экспериментальной статистической регулярности
получено, что игрок с вероятностью 1

3 выигрывает при сохранении своего первоначального
выбора, тогда как при переходе на выбор ведущего вероятность выигрыша в два раза выше и
равна 2

3 .
Парадокс Монти Холла в терминах «три шкатулки – один шарик» в

противостоянии «Интуиция – строгое математическое доказательство». Снова
вернемся к условию задачи. Таким образом, допустим, что один игрок и один ведущий
вступают в игру, в которой игроку надо найти шкатулку с шариком: имеются три абсолютно
одинаковые шкатулки, в одной из них, известной только ведущему, шкатулке лежит шарик,
в двух других ничего нет. Сначала игрок произвольно, пока у игрока нет никаких оснований
предпочесть какую-то из трех, выбирает одну из них, но не открывает, поэтому не знает, есть
или нет в ней шарик. После чего ведущий, который, повторимся, заранее знает, в какой из
шкатулок лежит шарик, открывает и показывает игроку из двух оставшихся пустую шкатулку,
затем ее удаляет из игры, – ведущий всегда может такое действие осуществить: если игрок
выбрал пустую шкатулку, то из двух оставшихся все равно для удаления одна пустая найдется,
если же он выбрал шкатулку с шариком, то оставшиеся две пустые, так что ведущий может
удалить любую из них.

Тем самым, в задаче поиска игроком шкатулки с шариком возникла новая ситуация:
шкатулок с неизвестным для игрока содержанием «есть в ней шарик или нет» осталось 2 –
первая игроком выбранная шкатулка и вторая оставленная неоткрытой ведущим, которую
условились называть «выбор ведущего». Какую из них – выбранную из трех шкатулок самим
игроком или из остальных двух выбранную ведущим выбрать игроку? И тогда ведущий
отрывает выбранную игроком шкатулку, и игрок видит – выиграл или проиграл.

Здесь сталкиваются интуиция как процесс умозрительного постижения истины только
по своему приобретенному на происходящий момент опыту без доказательного обоснования
и строгое математическое доказательство, причем случаи их противоречия относятся к
замечательным, именуемым специальным термином «парадокс».

Само название задачи говорит об ожидаемом ответе в виде неподтверждения интуитивного
заключения, но это после вычислений по двум вероятностным пониманиям.
Начнем с нахождения величин искомых вероятностей по интуиции и с

позиций «здравого смысла» с одним одинаковым ответом 1
3 нахождения приза и для

первоначального выбора игрока, и для перехода к выбору ведущего, да еще с равной
вероятностью 1

2 для каждого из этих двух оставшихся возможных выборов.
Итак, разметим шкатулки цифрами 1, 2, 3 и определим события A1 и A1 соотвественно

как наличие и отсутствие шарика в первой шкатулке, A2 и A2 то же во второй, A3 и A3 –
в третьей шкатулке.

Естественно предположить, что изначально наличие шарика в каждой из трех шкатулок
равновероятно:

P (A1) = P (A2) = P (A3) =
1

3
. (1)

Этим фиксируем, что если бы игрок остановился на своем первоначальном выборе, то
вероятность нахождения шкатулки с шариком равна 1

3 , ибо реализуется одно и только одно
из событий A1, A2, A3 с номером шкатулки с шариком, причем известным только одному
ведущему.
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Теперь приступим к самой игре. Событие Ai (i = 1, 2, 3) – приз находится в шкатулке под
номером i есть исходная стадия игры, еще до действий игрока и ведущего.

Первая стадия игры заключается в выборе игроком шкатулки, номер которой обозначим
буквой j , и назовем «выбор игрока». Далее перейдем ко второй стадии игры, сложившейся
после выбора игроком одной шкатулки из трех, когда выбор из двух оставшихся уже за
ведущим.

Опишем этот заключительный сценарий. Для получения интуитивных выводов здесь
достаточно рассмотреть одну конкретную ситуацию. Не уменьшая общности, с точностью до
перехода к другому номеру шкатулки, можем считать, что игроком выбрана третья – «выбор
игрока» есть шкатулка под номером 3. Тогда, в зависимости от наличия или отсутствия шарика
в выбранной игроком в шкатулке, «выбор ведущего» производится следующим образом.

Если, во-первых, выбор игрока третьей шкатулки оказался A3 содержания без шарика,
тогда выбор ведущего однозначно есть шкатулка 1 с шариком A1 , если шарик в первой
шкатулке, с удалением пустой второй шкатулки (или A2 , когда ведущий показывает и удаляет
пустую первую шкатулку). Если же, во-вторых, «выбор игрока» есть A3 – шарик в третьей
шкатулке, то первые две шкатулки пусты – имеют место A1 и A2 , так что если ведущий
откроет A1 , то «выбор ведущего» будет A2 , если же ведущий откроет A2 , то «выбор
ведущего» будет A1 .

В результате остаются две шкатулки: на первом этапе игры «первоначальный выбор игрока»
производится без предпочтений одной из трех возможностей выбора шкатулки с вероятностью
1
3 нахождения шарика в каждой из трех имеющихся шкатулок, и тогда, согласно классическому
определению, вероятность выигрыша игроком при своем «первоначальном выборе игрока»
равна 1

3 .
Второй этап игры, создавшийся после открытия ведущим пустой шкатулки, меняет

вероятностные рассмотрения – остаются две шкатулки – «выбор игрока» и «выбор ведущего»
без предпочтения одного из этих выборов, да еще, когда в одной и только одной из них
находится шарик. Тем самым получаем, что вероятность нахождения шарика в каждый
из шкатулок с названиями «выбор игрока» и «выбор ведущего» одинакова, стало быть, без
предпочтения одного из этих двух выборов, и потому согласно классическому определению
вероятности равна 1

2 . Также обратим внимание на то, что вероятность нахождения шарика
по «выбору игрока» в процессе рассмотрения поднялась с 1

3 до 1
2 .

Итоговый выбор игрока первичного собственного или перехода на выбор ведущего для
нахождения шкатулки с шариком имеют одну и ту же вероятность 1

2 , и потому для игрока
нет разницы в том, что он сохранит свой выбор или перейдет на выбор ведущего.

Это и есть интуитивный выбор, по приведенным рассуждениям логически правильный –
при независимых двух действиях показательно удаляется одна пустая шкатулка и остаются
две равновероятные шкатулки, в каждой из которых с вероятностью 1

2 находится шарик.
Запомним главное: «интуитивная» вероятность нахождения шкатулки с шариком при

сохранении игроком своего первоначального выбора – выбор игрока – равна 1
2 , то же с той же

вероятностью 1
2 и при переходе на «выбор ведущего».

Теперь перейдем к теоретико-вероятностным рассмотрениям.
Итак, вероятностное решение задачи «Парадокс Монти Холла» методом

математического обоснования на основе формулы Байеса, – строится описывающее
игру «Парадокс Монти Холла» вероятностное пространство (Ω,F , P ) , в котором
доказывается, что вероятность выигрыша игроком приза при сохранении своего
первоначального выбора равна 1

3 , а при переходе на выбор ведущего имеет вероятность
2
3 .

§2. Парадокс Монти Холла на примере трех одинаковых шкатулок с одним
шариком только в одной из них в контексте формулы Байеса с описанием
вероятностного пространства. В приведенных интуитивных рассуждениях не было
использовано то обстоятельство, что выбор ведущего производится после выбора игрока,
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другими словами, в изменившихся условиях, при этом вероятности вычисляются по формуле
Байеса.

Таким образом, аккуратно проследим за разворачивающимися действиями.
Парадокс Монти Холла – это классическая задача теории вероятностей, которая часто

вызывает дефект восприятия реальности, что в описании выглядит так: «Следует сказать,
что магистранты делятся на тех, которые понимают решение, и которые не понимают.
Причем аргументы редко помогают изменить мнение тех, кто решение не понимает».

Как это сообщалось выше, в этой игре по результатам экспериментов имеет место
статистическая регулярность выигрыша с вероятностью 1

3 сохранения игроком своего
выбора и вероятностью 2

3 при переходе на выбор ведущего. Выше в терминах «три шкатулки
– один шарик» в рамках интуитивных рассуждений были установлены противоречащие
«статистической регулярности» величины вероятностей отыскания шарика при сохранении и
перемене своего первоначального выбора игроком в равном количестве 1

2 .
Перейдем к описанию вероятностного пространство (Ω,F , P ) .
Опять же, цифры 1, 2, 3 используем для обозначения имеющихся трех шкатулок.
Для описания игры «Парадокс Монти Холла» будем использовать обозначения A,B,M, V

в соответствии с присвоенными действиями над шкатулками с их номерами в виде нижних
индексов, которые будем называть «событиями»:
A : A1, A2, A3 ≡ Ai (i = 1, 2, 3) – шарик находится в шкатулке под номером i (как это и

было раньше),
B : B1, B2, B3 ≡ Bj (j = 1, 2, 3) – игрок выбирает шкатулку под номером j ,
M : M1,M2,M3 ≡ Mk (k = 1, 2, 3) – ведущий открывает шкатулку без шарика под

номером k ,
V : V1, V2, V3 ≡ Vτ (τ = 1, 2, 3) – шкатулка с названием «выбор ведущего» под номером τ .
Вероятностное пространство (Ω,F , P ) составлено, в неполном описании, с привлечением

лишь необходимого для поставленной цели, из событий A,B,M, V, алгебры над ними вместе с
условными событиями, вероятности которых определены по правилам игры «Парадокс Монти
Холла».

Игра состоит в последовательности событий

(Ai, Bj ,Mk, Vτ ) ,

или, что то же самое, вектора (i, j, k, τ) с координатами из чисел 1, 2, 3, в котором произвольны
первые два – эта шкатулка с шариком под номером i и выбранная игроком шкатулка под
номером j . Остальные шкатулки – открываемая ведущим пустая шкатулка под номером k и
оставшаяся неоткрытой вторая шкатулка под номером τ , зависят от взаимоотношений между
первыми шкатулками i и j в виде i = j или i 6= j .

Изучаемая задача основана на теореме полной вероятности и формуле Байеса.
Поэтому, начиная с событий A1, A2 и A3 с распределением вероятностей (1),

вычисляются вероятности событий, входящих в эти формулы, включая вероятности
невозможного и достоверного событий равных соответственно 0 и 1, двух равновозможных
взаимодополнительных событий с вероятностями 1

2 каждая.
Итак, игра разбивается на части различного содержания. Игрок выбрал шкатулку Bj ,

ведущий открыл несовпадающую с ней пустую шкатулку Mk . Тогда выбор ведущего есть
никак незадействованная третья шкатулка Vτ с τ 6= j, τ 6= k .

И тем, на выбор игрока остаются две шкатулки Bj и Vτ с номерами j и τ соответственно.
В условиях открытия ведущим пустой шкатулки Mk вероятность выигрыша при сохранении
игроком своего выбора неизвестного содержания шкатулки Bj находится заменой ее на
заведомо выигрышное Aj с тем же номером j , стало быть, есть вероятность условного события
Aj |Mk , то же с заменой V на A тем же номером τ с переходом на вероятность условного
события Aτ |Mk .

В итоге,
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10 . Шкатулка с номером j как сохранение игроком своего выбора с вероятностью
выигрыша P (Aj |Mk) ,

20 . Шкатулка с номером τ как выбор ведущего с вероятностью выигрыша P
(
Aτ |Mk

)
.

Итак, приступим к решению поставленной задачи.
Покажем, что в этих обозначениях цель «выбор шкатулки с шариком – нахождение шарика –

выигрыш» в синомном понимании в итоговом решении игрока сохранить свой выбор шкатулки
или перейти на выбор ведущего имеет следующее распределение вероятностей:

- «выбор игрока» имеет вероятность выигрыша

P (Aj |Mk) =
1

3
, (2)

- «выбор ведущего» имеет вероятность выигрыша

P (Aτ |Mk) =
2

3
. (3)

Вероятность условного события A|M выполнения события A при условии, если ведущий
открыл шкатулку M, по формуле Байеса равна

P (A|M) =
P (M |A) · P (A)

P (M)
.

Теорема полной вероятности для события M приводит к равенству

P (A|M) =
P (M |A) · P (A)

P (M |A1) · P (A1) + P (M |A2) · P (A2) + P (M |A3) · P (A3)
.

В этой формуле в силу (1) имеем

P (A|M) =
P (M |A) · 1

3

P (M |A1) · 1
3 + P (M |A2) · 1

3 + P (M |A3) · 1
3

= (4)

=
P (M |A)

P (M |A1) + P (M |A2) + P (M |A3)
,

где в знаменателе два слагаемых, поскольку

P (Mj |Aj) = 0 (j = 1, 2, 3) , (5)

ибо при i = j ведущий не может открыть шкатулку j как пустую, когда в ней приз Aj , и
потому Mj |Aj = ∅ (как это общепринято, ∅ – пустое множество).

Пусть выбор игрока есть Bj (j = 1, 2, 3) , тогда теоретически возможны два случая: Bj 6=
Ai (i = 1, 2, 3) и Bj = Aj , что означает «шкатулка j пуста» и «в шкатулке j шарик»
соответственно.

10 . i 6= j – шкатулка j пуста в распределении шкатулок B1,M3, V2.
Имеем первый случай Bj пустой шкатулки в следующей конкретизации j = 1 – шкатулка

B1 пуста
B1 : j = 1, B1 6= Ai (i = 1, 2, 3) .

Тогда в условиях пустой шкатулки B1 шарик находится либо в шкатулке 2, либо в шкатулке
3. Для определенности допустим, что шарик в шкатулке i = 2 , тогда ведущему без вариантов
остается открыть пустую шкатулку k = 3 . Тем самым, шкатулки распределились так
B1,M3, V2 : выбор игрока j = 1, выбор ведущего τ = 2 , ведущий открывает пустую шкатулку
k = 3 .

В этих договоренностях вычислим вероятность выигрыша P (A1|M3) при сохранении
игроком своего выбора B1 .
Вычисление P (A1|M3) :

P (Aj |Mk) = P (A1|M3)
(4)
=

P (M3|A1)

P (M3|A1) + P (M3|A2) + P (M3|A3)

(5)
= (6)
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(5)
=

P (M3|A1)

P (M3|A1) + P (M3|A2)
,

поскольку событие M3|A3 – в шкатулке 3 находится шар, тогда M3 – открытие пустой
шкатулки 3 невозможно, и потому действует равенство (5).

Вычислим надлежащие определению величины P (M3|A1) и P (M3|A2) из (6), в котором
помним, что игрок выбрал j = 1 .

Нахождение P (M3|A1) : шарик в 1, игрок выбрал 1, ведущий по своему желанию может
открыть любую пустую из двух взаимодополнительных событий M2 и M3 , то есть с равной
вероятностью

P (M3|A1) =
1

2
= P (M2|A1) . (7)

Нахождение P (M3|A2) : шарик в 2, игрок выбрал 1, ведущий обязан выбрать шкатулку
M3 с вероятностью достоверного события, ибо шкатулки 2 и 1 уже задействованы, так что

P (M3|A2) = 1. (8)

В итоге, в силу (6)-(8) имеем

P (A1|M3) =
1
2

1
2 + 1

=
1
2
3
2

=
1

3
, (9)

что доказывает (2) при j = 1, k = 3, i = 2 (в предположении Bj 6= Ai (i = 1, 2, 3) ).
Вычисление P (A2|M3) . Теперь найдем вероятность (3) получения приза в условиях

B1,M3, V2 по выбору ведущего t = 2 , i = 2, k = 3 , тогда в силу (2), (7) и P (M3|A3) = 0
имеем:

P (Ai|Mk) = P (A2|M3)
(4)
=

P (M3|A2)

P (M3|A1) + P (M3|A2) + P (M3|A3)

(5)
= (10)

(5)
=

P (M3|A2)

P (M3|A1) + P (M3|A2)
.

Нахождение P (M3|A2) : шарик в 2, игрок выбрал 1, так что шкатулки 2 и 1 уже в игре,
и потому ведущий без вариантов выбирает M3 , и тем приходим к (8).
Нахождение P (M3|A1) : шарик в 1, игрок выбрал 1, ведущий по своему желанию может

открыть любую пустую из двух взаимодополнительных событий M2 и M3 , то есть с равной
вероятностью (7).

Стало быть, из (10), (8) и (7) следует

P (A2|M3) =
1

1
2 + 1

=
2
2
3
2

=
2

3
. (11)

Тем самым, (3) выполнено при j = 1, i = 2, k = 3 (в предположении Bj 6= Ai (i = 1, 2, 3) ).
20 . i = j – шкатулка j с шариком в распределении шкатулок B1,M2, V3.

Имеем второй случай «Выбранная первоначально игроком шкатулка Bj с шариком Bj = Aj »
в конкретизации «Выбор игрока B1 : j = 1 ». Ведущему известно, что B1 = A1 : i = j = 1
шарик находится в первоначально выбранной игроком шкатулке 1, так что ведущий по своему
желанию (случайно), может открыть M2 и M3 – пустые шкатулки 2 и 3, пусть теперь откроет
M2(k = 2) , тогда V3 (τ = 3) есть выбор ведущего, так что находимся в условиях B1, M2, V3.
Вычисление P (A1|M2) . Вероятность P (A1|M2) нахождения приза по выбору игрока

при j = 1, k = 2 есть

P (Aj |Mk) = P (A1|M2)
(4)
=

P (M2|A1)

P (M2|A1) + P (M2|A2) + P (M2|A3)

(5)
=

(5)
=

P (M2|A1)

P (M2|A1) + P (M2|A3)
. (12)

Нахождение P (M2|A3) : в условиях B1,M2, V3, A3 шарик в 3, игрок выбрал 1, так что
ведущий однозначно открывает M2 с вероятностью достоверного события
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P (M2|A3) = 1. (13)

Нахождение P (M2|A1) : в условиях B1,M2, V3, A1 шарик в 1, игрок выбрал 1, так что
ведущий с одинаковой вероятностью 1

2 может открыть и M2 , и M3

P (M2|A1) =
1

2
= P (M2|A1) . (14)

Таким образом, вероятность P (A1|M2) выигрыша по выбору игрока в случае B1 = A1 по
(12)-(14) равна

P (A1|M2) =
1
2

1
2 + 1

=
1
2
3
2

=
1

3
,

что подтверждает (2).
Вычисление P (A3|M2) . Теперь в условиях B1,M2, V3, A3 случае B1 = A1 , i = τ =

3, k = 2 вероятность P (A3|M2) выигрыша по выбору ведущего V3 равна

P (Ai|Mk) = P (A3|M2)
(4),(5)

=
P (M2|A3)

P (M2|A1) + P (M2|A3)
. (15)

Все составляющие выражения (15) были вычислены ранее:

P (M2|A3)
(13)
= 1 и P (M2|A1)

(14)
=

1

2
.

Из (15), (14) и (13) получаем

P (A3|M2) =
1

1
2 + 1

=
2
2
3
2

=
2

3
,

то есть в выборе Ведущего с i = 3, k = 2 приходим к (3).
В итоге, и второй случай B1 = A1 , подтверждает выводы (2)-(3), так что доказательство

выполнено.
В заключение отметим, что выбранные конкретизации i, j и k применены для сокращения

записей, а выводы (2)-(3) во всех остальных случаях устанавливаются теми же рассуждениями
и верны.
Увеличение количества шкатулок раскрывает механизм происходящего. Оставляя

условия игры, увеличим количество шкатулок с трех, например, до ста. При этом в одной
из шкатулок находится шарик, остальные 99 – пусты. Игрок с вероятностью 1

100 нахождения
шарика выбирает одну из шкатулок, поскольку, согласно классическому определению, с равной
вероятностью 1

100 шарик находится в каждой из 100 шкатулок, а игрок выбрал ровно одну.
После этого из оставшихся 99 шкатулок, из которых 98 пусты, если выбранная игроком
шкатулка пуста и все 99 пусты, если выбранная игроком шкатулка с шариком, ведущий может
и открывает 98 пустых шкатулок. В итоге остаются две шкатулки – первоначально выбранная
игроком и одна оставшаяся шкатулка, которую, как и прежде, назовем «выбор ведущего».
Опять же, ведущий предлагает игроку выбрать одну из этих двух шкатулок.

Теперь, обозначая через P (D) вероятность нахождения приза в шкатулке D , в случае ста
шкатулок с одним шариком имеем

1 = P (B) + P

(
V ∪

(
98⋃
k=1

M (k)

))
=

1

100
+ P (V ) +

98∑
k=1

P
(
M (k)

)
,

где M (1), . . . , M (98) – это 98 пустых шкатулок, открытых ведущим, с оставлением шкатулки
B – выбор игрока с вероятностью выигрыша P (B) = 1

100 и шкатулки V – выбор ведущего,
причем все 100 шкатулок как события с шариком или без независимы.
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Но, с учетом «ведущий открывает 98 пустых шкатулок» с вероятностями P
(
M (1)

)
=

0, . . . , P
(
M (98)

)
= 0 , получаем

P (V ) =
99

100
−

98∑
k=1

P
(
M (k)

)
=

99

100
−

98∑
k=1

0 =
99

100
,

уже по общему свойству аддитивности вероятности.
В случае трех шкатулок это было доказано выше на основе формулы Байеса пересчета

вероятностей после получения новой информации, в случае ста шкатулок теоретическое
доказательство приведенных здесь эврестических рассуждений сохраняется.

В итоге, вероятность нахождения шарика в выбранной игроком шкатулке равна 1
100 , тогда

в одной оставленной в игре ведущим шкатулке 99
100 , так что заключительный переход игрока

на выбор ведущего однозначен.
Алгоритм численного эксперимента по проверке статистической регулярности

вероятностной задачи «Парадокс Монти Холла» в вероятностном описании.
I. Алгоритм расположения событий по правилам игры «Парадокс Монти Холла» в

последовательности экспериментов в зависимости от случайных целых чисел xn, yn и zn,
где n = 1, 2, · · · − номер эксперимента

a) Ani ≡ xn (mod 3) = 1, 2, 3 – номер шкатулки с шариком;
b) Bn

j ≡ yn (mod 3) = 1, 2, 3 – номер шкатулки «Выбор игрока»;
c) Если i 6= j, то Mn

k : k 6= i, k 6= j, V n
τ : τ 6= k, τ 6= j – если в шкатулке «Выбор

игрока» Bn
j нет шарика j 6= i , то действия ведущего однозначны: одна из шкатулок пуста

Mn
k (k 6= i, k 6= j) , другая с шариком V n

τ (τ 6= k, τ 6= j) .
d) Если i = j, то полагаем k1 6= j, k2 6= j, k1 < k2, Mn

k : k = k1, V n
τ : τ = k2,

e) Выбор k1 и k2 ( k1 < k2 ) в неоднозначном выборе ведущего случаен, что обеспечивается
последовательностью случайных величин zn (mod 2) = 1, 2 :

Если zn = 1, то k = k1 и тогда Mn
k1

(k = k1) и V n
k2

(τ = k2) ,
Если zn = 2, то k = k2 и тогда k = k2, τ = k1, M

n
k2

и V n
k1

.
II. На номере эксперимента n вместе с Ani «Шкатулка с шариком» и Bn

j «Выбор игрока»
остается V n

τ – «Выбор ведущего».
На этом этапе заполняется Таблица 1.

Таблица 1 – Распределение шкатулок

n-номер эксперимента
Распределение шкатулок

1 2 3
Ani Bn

j V n
τ

1
. . .
n i j τ
. . .
N

III. На номере n эксперимента по предыдущим данным Ani , Bn
j и V n

τ находятся
результаты « 1 -выигрыш игрока» и « 0 – проигрыш игрока».

f) Игрок в поиске приза оставляет за собой свой выбор Bn
j : на номере j по данным (i, j, τ)

из Таблицы 1 производится сравнение с Ani c результатами 1 и 0
Bn
j = Anj ⇒ 1, если номер j совпадает с номером i , то выигрыш 1 ,

Bn
j 6= Anj ⇒ 0, если номер j не совпадает с номером i , то проигрыш 0 .
g) Игрок меняет свой выбор на выбор ведущего V n

τ : на номере τ по данным (i, j, τ) из
таблицы 1 производится сравнение с Ani .
V n
τ = Ant ⇒ 1, если номер τ совпадает с номерами i , то выигрыш 1,
V n
τ 6= Anτ ⇒ 0, если номер τ не совпадает с номерами i , то проигрыш 0.
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На этом этапе продолжается Таблица 1, что оформлено в Таблице 2.

Таблица 2 – Распределение шкатулок

n-номер эксперимента
Выигрыш состоялся-1 или не состоялся -0

1 2 3 4 5
Ani Bn

j V n
τ Игрок сохраняет свой

выбор Bn
j

Игрок меняет свой
выбор на выбор
ведущего V n

τ

1 0 или 1 0 или 1
2 0 или 1 0 или 1
. . . . . . . . .
n i j τ i = j ⇒ 1, i 6= j ⇒ 0 τ = j ⇒ 1, τ 6= j ⇒ 0
. . . . . . . . .
N

IV. Частоты выигрыша при «Игрок сохраняет свой выбор» и при «Игрок меняет свой выбор
на выбор ведущего» и построение графика (Количество экспериментов, частота выигрышей
при «Игрок сохраняет свой выбор») и (Количество экспериментов, частота выигрышей при
«Игрок меняет свой выбор на выбор ведущего»).

Таблица 3 – Распределение шкатулок

К
ол

ич
ес
тв

о
эк
сп
ер

им
ен

то
в

Количество и частота выигрышей в проведенном количестве экспериментов
6 7 8 9 10
Общее
количество
выигрышей
при «Игрок
сохраняет
свой выбор» в
проведенном
количестве
экспериментов

Общее
количество
выигрышей при
«Игрок меняет
свой выбор на
выбор ведущего»
в проведенном
количестве
экспериментов

Общее
количество
выигрышей в
проведенном
количестве
экспериментов

Частота
выигрыша
при «Игрок
сохраняет
свой выбор»
в проведенном
количестве
экспериментов

Частота
выигрыша
при «Игрок
меняет
свой выбор
на выбор
ведущего» в
проведенном
количестве
экспериментов

N
∑

1(N)
∑

2(N)
∑

1(N)+
∑

2(N)
∑

1(N)∑
1(N)+

∑
2(N)

∑
2(N)∑

1(N)+
∑

2(N)

На Рисунке 1 показано схематическое представление частот выигрыша при фиксированном
количестве проведенных экспериментов N .
§3. Парадокс Монти Холла на примере трех одинаковых шкатулок с одним

шариком только в одной из них с построением вероятностного пространства
Вероятностная модель задачи Монти Холла описывает последовательность действий,

происходящих в одном опыте: размещение приза, первый выбор игрока, действие ведущего
и последующее окончательное решение игрока. Каждой из трех шкатулок присваивается
свой номер 1, 2, 3. Под элементарным исходом одного испытания игры Монти Холла будем
понимать четверку

ω = (i, j, k, τ),

где i ∈ {1; 2; 3} – номер шкатулки, в которой находится приз (событие Ai ), j ∈ {1; 2; ; 3} –
номер шкатулки, первоначально выбранной игроком (событие Bj ), k ∈ {1; 2; 3} – номер пустой
шкатулки, открытой ведущим (событие Mk ), τ ∈ {1; 2; 3} – окончательный выбор игрока
(событие Vτ ).
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Рисунок 1 – График частот в игре «Парадокс Монти Холла»

Правила игры запрещают ведущему открывать шкатулку с призом или шкатулку,
выбранную игроком. Поэтому для допустимых исходов справедливы ограничения

k 6= i, k 6= j.

После открытия ведущим пустой шкатулки k две оставшиеся остаются закрытыми, одна из
которых ранее была выбрана игроком. Для любой пары различных номеров j и k обозначим
через tj,k единственный элемент множества {1, 2, 3}\{j, k} . Таким образом, tj,k однозначно
определяется правилами игры. Открытую ведущим шкатулку игрок, разумеется, не выбирает.
Окончательный выбор игрока может принимать только два значения: либо первоначальный
выбор j , либо другая закрытая шкатулка tj,k . Это приводит к следующему описанию
пространства элементарных исходов

Ω = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3}, k 6= i, k 6= j, τ ∈ {j, tj,k}}.
События, соответствующие отдельным этапам эксперимента, задаются как подмножества

пространства Ω :

Ai = {(i, j, k, τ) : j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ ∈ {j, tj,k}} (i = 1, 2, 3) ,

Bj = {(i, j, k, τ) : i, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ ∈ {j, tj,k}} (j = 1, 2, 3) ,

Mk = {(i, j, k, τ) : i, j, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ ∈ {j, tj,k}} (k = 1, 2, 3) ,

Vτ = {(i, j, k, τ) : i, j, k ∈ {1, 2, 3} , k 6= i, k 6= j, τ ∈ {j, tj,k}} (τ = 1, 2, 3) .

Событие выигрыша определяется совпадением окончательного выбора игрока с
фактическим расположением приза

C = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3}, k 6= i, k 6= j, τ = i}.
Две стратегии поведения игрока описываются подмножествами Ω .

Стратегия H1 (игрок сохраняет первоначальный выбор):

H1 = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3}, k 6= i, k 6= j, τ = j}.
Стратегия H2 (игрок переходит к оставшейся закрытой шкатулке):

H2 = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3}, k 6= i, k 6= j, τ = tj,k}.
Вероятность элементарного исхода (i, j, k, τ) ∈ Ω по правилу произведения вероятностей

раскладывается по стадиям эксперимента
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P ({(i, j, k, τ)}) = P (AiBjMkVτ ) = P (Ai) P (Bj | Ai) P (Mk | AiBj) P (Vτ | AiBjMk) . (16)

Размещение приза по трем шкатулкам равновероятно:

P (Ai) =
1

3
. (17)

Поскольку первый выбор игрока одной шкатулки j из трех возможных произволен и не
зависит от расположения приза в шкатулке i , то

P (BjAi) = P (Bj) =
1

3
. (18)

Условная вероятность действия ведущего полностью задаётся правилами игры. Если
первоначально выбранная игроком шкатулка пустая j 6= i , то ведущий имеет единственный
допустимый вариант открытия пустой шкатулки с вероятностью достоверного события:

P (MkAiBj) = 1.

Если в первоначально выбранной игроком шкатулке j находится приз j = i , то ведущий
выбирает с одинаковой вероятностью между двумя пустыми шкатулками

P (Mk | AiBj) ≡ P (MkAiBi) ≡ P (MkAjBj) =
1

2
.

После того, как ведущий открыл шкатулку k , игроку известно, что событие Mk произошло
и шкатулка k пуста. Это означает, что все элементарные исходы, в которых одновременно
выполняются события Ak и Mk , имеют нулевую вероятность, поскольку правила игры
запрещают ведущему открывать шкатулку с призом. Поэтому при переходе к условным
вероятностям при условии Mk из рассмотрения устраняются все исходы с Ak , тогда как
исходы, в которых выполняется событие Aj , остаются допустимыми и их вероятность не
изменяется.

Следовательно, после учёта события Mk условная вероятность события Aj остаётся равной
1/3 , а вероятностная масса всех остальных допустимых исходов сосредоточивается на событии
Atj,k . В терминах окончательного выбора игрока получаем

P (Vj |AiBjMk) =
1

3
, P (Vtj,k |AiBjMk) =

2

3
. (19)

Итоговая формула для вероятности любого элементарного исхода согласно (17)-(19) по
формуле (16) приводит к равенствам

P ({(i, j, k, τ)}) =
1

3
· 1

3
· P (Mk | AiBj) · P (Vτ | AiBjMk) =

=



1

3
· 1

3
· 1 · 1

3
=

1

27
, если τ = j 6= i,

1

3
· 1

3
· 1 · 2

3
=

2

27
, если j 6= i, τ = tj,k,

1

3
· 1

3
· 1

2
· 1

3
=

1

54
, если j = i = τ,

1

3
· 1

3
· 1

2
· 2

3
=

1

27
, если j = i, τ = tj,k.

(20)

Эта вероятностная структура выведена из правил игры Монти Холла и далее будет
использована при численном моделировании стратегий H1 и H2 .

Определим событие CH1 выигрыша приза при стратегии H1 , в равенствах i = j = τ
оставляя i :

CH1 ≡ C ∩H1 =

{(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ = i}∩

∩{(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ = j} =
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i=j=τ
= {(i, i, k, i) : i, k ∈ {1, 2, 3} , k 6= i} ,

что есть

CH1 = {(1, 1, 2, 1) ; (1, 1, 3, 1) ; (2, 2, 1, 2) ; (2, 2, 3, 2) ; (3, 3, 1, 3) ; (3, 3, 2, 3)} .
Поэтому согласно (20)

P (CH1) =
∑

ω∈CH1

P ({ω}) =
1

54
· 6 =

1

9
.

Теперь для вычисления условной вероятности P (C|H1) необходимо верятность события –
стратегии

H1 = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ = j} =

= {(1, 1, 2, 1) , (1, 1, 3, 1) , (1, 2, 3, 2) , (1, 3, 2, 3) , (2, 2, 1, 2) , (2, 2, 3, 2) , (2, 1, 3, 1) ,

(2, 3, 1, 3) , (3, 3, 1, 3) , (3, 3, 2, 3) , (3, 2, 1, 2) , (3, 1, 2, 1)},
тем самым искомая вероятность

P (H1) =
∑
ω∈H1

P ({ω}) =
1

54
· 6 +

1

27
· 6 =

18

54
=

1

3
.

Тогда условная вероятность равна

P (C|H1) =
P (CH1)

P (H1)
=

1
9
1
3

=
1

3
.

Теперь найдем вероятность выигрыша при стратегии H2. Так как

CH2 = {(i, j, k, i) : i, j, k ∈ {1, 2, 3} , i 6= j, k 6= i, k 6= j, } =

= {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ = i}∩
∩{(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3}, k 6= i, k 6= j, τ = tj,k} =

i=τ 6=j
= {(i, j, k, i) : i, j, k ∈ {1, 2, 3} , k 6= i 6= j} =

= {(1, 2, 3, 1) , (1, 3, 2, 1) , (2, 1, 3, 2) , (2, 3, 1, 2) , (3, 1, 2, 3) , (3, 2, 1, 3)}.
Следовательно, событие выигрыша при стратегии H2 реализуется тогда и только тогда,

когда индекс шкатулки с призом i не совпадает с индексом первоначального выбора игрока
j . Аналогично, согласно (20)

P (CH2) =
∑

ω∈CH2

P ({ω}) =
2

27
· 6 =

4

9
.

Опять же для вычисления условной вероятности P (C|H2) вычислим вероятность события
– стратегии

H2 = {(i, j, k, τ) : i, j, k, τ ∈ {1, 2, 3} , k 6= i, k 6= j, τ = tj,k} =

= {(1, 1, 2, 3) , (1, 1, 3, 2) , (1, 2, 3, 1) , (1, 3, 2, 1) , (2, 2, 1, 3) , (2, 2, 3, 1) , (2, 1, 3, 2) ,

(2, 3, 1, 2) , (3, 3, 1, 2) , (3, 3, 2, 1) , (3, 2, 1, 3) , (3, 1, 2, 3)},
тогда

P (H2) =
∑
ω∈H2

P ({ω}) =
1

27
· 6 +

2

27
· 6 =

18

27
=

2

3
.

Тогда условная вероятность равна

P (C|H2) =
P (CH2)

P (H2)
=

4
9
2
3

=
2

3
.

§4. Случайности к вычислениям статистической регулярности вероятностной
задачи «Парадокс Монти Холла». Статистическая проверка Парадокса Монти Холла, в
дополнение к многочисленным известным, возможна также на основе ранее не использованных
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датчиков случайных чисел – это авторские линейный конгруэнтный генератор [8]-[9] и метод
квази Монте-Карло [10]-[14].
1 0 . Линейная конгруэнтная последовательность Лехмера в случайности Ковэю

и Макферсона [8]-[9].
Линейная конгруэнтная последовательность Лехмера создана в 1948 году от

уравнения прямой y = ax + c в виде перестановки последовательности 1, 2, . . . , N по
рекуррентной формуле

xn+1 ≡ axn + c (mod N) (n ≥ 0).

Случайность Ковэю и Макферсона 1965 года предложения состоит в нахождении a и c в
зависимости от N такими, чтобы в разложении в конечную тригонометрическую сумму Фурье
фиксированного количества последовательных элементов этой последовательности координата
наиболее близкого к нулю ненулевого коэффициента Фурье будет наиболее от того же нуля
удалена, – отсюда и название «Спектральный критерий».

И в этом, наверное, вся ценность этой задачи – в Математике много примеров, когда
опирающаяся на самое начальное фундаментальное постановка сама фундаментальна.

Есть Стэнфорд, столица Кремниевой долины, в нем Дональд Кнут.
Дональд Кнут (Лекс Фридман, научный журналист, 2025 год): Дональд Кнут один

из величайших и самых влиятельных учёных в области Компьютерных наук и Математики
за всю историю. Он лауреат премии Тюринга за 1974 год, которую называют Нобелевской
премией в мире вычислительной техники. Он автор многотомного труда своего Magnum
opus "Искусство программирования".

Он внёс несколько ключевых вкладов в строгий анализ вычислительной сложности
алгоритмов, включая популяризацию асимптотической сложности, которую мы все
с любовью знаем как "Big-O notation". Он также создал систему вёрстки TeX,
которую используют большинство специалистов в области компьютерных наук, физиков,
математиков, да и в целом учёных и инженеров, чтобы писать научные статьи и придавать
им прекрасный вид.

Роль монографии Д.Э. Кнута «Искусство программирования» [15] в мире Компьютерных
наук возводится на уровень всего Человечества:

Журнал American Scientist включил «Искусство программирования» в список 12 лучших
физико-математических монографий ХХ-го столетия вместе с работами Дирака по
квантовой механике, Эйнштейна по теории относительности и немногочисленными
другими.

Обложка третьего издания первого тома книги содержит цитату Билла Гейтса: «Если
вы считаете себя действительно хорошим программистом. . . , прочитайте „Искусство
программирования“ (Кнута). . . Если вы сможете прочесть весь этот труд, то вам
определённо следует отправить мне резюме».

Обратимся к самой монографии:

В каждом из трех изданий своей монографии Дональд Кнут описывал состояние этой
темы на момент ее подготовки, в последнем известном изложение вместе с сопутствующими
сведениями составляет порядка 50 страниц текста.

На четверти страницах текста выписано то, что в течение 50 лет не нашло полного
и окончательного решения в тысячах и десятках тысяч публикаций со всеми высшими
наукометрическими показателями, и в этом мощь, красота и таинство Математики –
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на 10 строк постановки задачи 10 строк полного решения с последующей практической
рекомендацией равно в 1 строку.

Генератор случайных чисел Лехмера или же Линейная конгруэнтная последовательность
максимального периода 1948 года создания есть, по определению, рекуррентная
последовательность 〈xn〉 целых неотрицательных чисел xn+1 = (axn + c)mod N, n ≥ 0,
где целые числа a > 1, N > a, c > 0 таковы, что c и N взаимно просты, a − 1 кратно
каждому простому делителю N и кратно 4, если N кратно 4. Также для s -мерной (s ≥ 2)
последовательности y1 = (x1, ..., xs ) , y2 = (x2, ..., xs+1 ) , . . . , yN−s+1 = (xN−s+1, ..., xN )
положим

νs (a,N) = inf


√
m2

1 + · · ·+m2
s : m = (m1, . . . ,ms) ∈ Zs,m 6= 0,

s∑
j=1

mja
j−1 ≡0(mod N)

 .

И тогда задача заключается при заданных s ≥ 2, τ ≥ 2, λ ≥ 1 в выборе пар N и a такими,
что (a− 1)τ ≡ 0 (mod N) , (a− 1)τ−1 6≡ 0 (mod N) , λN = (a− 1)τ и чтобы величина νs (a,N)

была возможно большой при известной оценке сверху νs(a,N) ≤ γ(s)N
1
s .

Полное решение проблемы «SC-спектральный критерий» в «магических» ≡ «волшебных»
числах а и N заключается в следующем

10 . SC–2: ν2
2

(
a,N ; (a− 1)2 = N

)
= (a− 1)2

(
1− 2 a−2

(a−1)2

)
= N

(
1− 2

√
N−1
N

)
.

20 . SC (2 ≤ s = τ) :

N
2
s

(
1− (bs − 1)N−

1
s

)2
= (a−bs)2 ≤ ν2

s (a,N ; (a− 1)s = N) ≤ a2+1 = N
2
s

(
1 + 2N−

1
s + 2N−

2
s

)
.

30 . SC (2 ≤ s < τ, λ ≥ 1) :

(Nλ)
2
τ

(
1− (bs − 1)(Nλ)−

1
τ

)2
= (a−bτ )2 ≤ ν2

s (a,N ; (a− 1)τ = N, 1 ≤ λ ≤ (a− 1)τ−s) ≤ a2+1 =

(Nλ)
2
τ

(
1 + 2(Nλ)−

1
τ + 2(Nλ)−

2
τ

)
.

40 . SC (s > τ ≥ 2, λ ≥ 1) :
ν2
s (a,N ; (a− 1)τ = Nλ, λ ≥ 1) ≤

∑τ
k=0

((
τ
k

))2
.

где (−bm) есть наибольший по модулю отрицательный биномиальный коэффициент в
разложении (a− 1) m по степеням a : b2 = 2, b3 = 3, b4 = 4, b5 = 10, b6 = 20, b7 = 35,
b8 = 56, b9 = 126, b10 = 252, b11 = 462, b12 = 792, b13 = 1716, b14 = 3432, b15 = 6435, ... и т.д.

Отметим, что в пунктах 1 0 -3 0 установлена, можно сказать, «усиленная» асимтотика
порядка ранее известной оценки сверху, стало быть, неулучшаемая, тогда как пункт 4 0

завершает полную картину как случай неприменимости.
Практический выбор a и N : a = 4r0pr11 · · · p

rt
t + 1, N = 4u0pu11 · · · p

ut
t , 2 ≤ s ≤ τ =

max
{⌈

u1
r1

⌉
; . . . ;

⌈
ut
rt

⌉}
.

По-видимому, вряд ли из всех возможных Больших данных x0, a, c, N экспериментально
можно выделить «магические» ≡ «волшебные» числа а и N, что есть еще один возможный
ответ на вопрос “Может ли ML-AI полностью заменить Науку?”.
2 0 . Метод квази Монте-Карло на основе алгебраической теории чисел.

Являющаяся искомой случайная многомерная последовательность

xk =
(
x

(1)
k , . . . , x

(s)
k

)
(k = 1, 2, . . . , N) (21)

будет извлечена из метода Монте-Карло по правилу

x
(1)
k ≡ a1k (mod N) , . . . , x

(s)
k ≡ ask (mod N) , (22)

в котором для безгранично возрастающих целых положительных N по вполне определенному
алгоритму вычисляются целые положительные числа a1, ..., as такие, что соответствующая
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этим числам s -мерная последовательность ({...} - дробная часть, a = (a1, ..., as) )

ξk (a) =
({a1

N
k
}
, ...,

{as
N
k
})
≡
({

a
k

N

})
(k = 1, ..., N) (23)

является равномерно распределенной.
Пусть дано целое положительное число s . Конечное множество {ηk}Nk=1 точек s -мерного

единичного куба [0, 1]s называют сеткой, а ηk – ее узлами.
Дискрепансом (впервые как самостоятельное понятие «дисперсия интенсивности» изучалось

в [16], введение самого термина относят к ван дер Корпуту [17]) сетки {ηk}Nk=1 из [0, 1]s

называют число

Ds (η1, η2..., ηN ) = sup


∣∣∣∣GJN − |J |

1

∣∣∣∣ =

∣∣∣∣∣∣ 1

N

N∑
k=1

χJ (ηk)−
s∏
j=1

(bj − aj)

∣∣∣∣∣∣ : J =
s∏
j=1

[aj , bj ] ⊂ [0, 1]s

 ,

где J – параллелепипед в [0, 1]s со сторонами, параллельными осям, |J | – его s -мерный
объем, GJ – количество членов η1, ..., ηN , содержащихся в J, χB(x) – характеристическая
функция множества B .

Дискрепанс есть количественная характеристика отклонения доли GJ
N сетки η1, ..., ηN в J

от идеального распределения |J |
1 , выраженного отношением меры J к мере всего единичного

куба, и, тем самым, позволяет количественно отличить «хорошее» распределение от «плохого».

Последовательность сеток
{
η

(Nt)
k

}Nt
k=1

из [0, 1]s , где {Nt}∞t=1 – достаточно плотная
возрастающая (не быстрее степенной скорости) последовательность целых положительных
чисел, называют равномерно распределенной на [0, 1]s , если для некоторых положительных
величин c (s) и β (s) и всех t ≥ 1 имеет место неравенство

Ds

(
η

(Nt)
1 , η

(Nt)
2 , ..., η

(Nt)
Nt

)
≤ c (s)

lnβ(s)Nt

Nt
. (24)

Обратимся к построению сеток (22)-(24).
В 1959 году Н.М.Коробов (см.[18]) доказал, что для любого целого положительного N

существуют взаимно простые с N целые числа a1, ..., as такие, что соответствующая этим
числам сетка (23) является равномерно распределенной. В дальнейшем сетки вида (23) из
других соображений были переоткрыты в 1962 году Э. Хлавкой [19], применение теории
дивизоров также приводит к таким же сеткам ([10-14]).

Теоретический и практический интерес к построению сеток вида (23) объясняется, в
частности, следующим. В общем случае, для записи сетки объема N требуется sN
действительных чисел. Достоинством сеток вида (23) является тот факт, что они полностью
определяется, независимо от объема N, заданием s+1 целых чисел (N, a1(N), ..., as(N)) ∈ Zs+1

(и легко выписывается за � N элементарных арифметических операций), причем каждая
координата каждого узла сетки есть обыкновенная дробь с малым, в данных условиях,
знаменателем N.

Так, например, при размерности s = 10 и количестве узлов сетки N = 106 объем записи
и хранения сетки в памяти ЭВМ составляет sN = 107 чисел, в то время как в случае сетки
вида (23) запись и хранение обеспечивается s+ 1 = 11 целыми числами (причем, независимо
от числа узлов N . Тем самым, в случае равномерно распределенных сеток (23), по указанию
С.М.Никольского нами названного «Сетка Коробова», речь идет о сверхсжатии информации
объема sN до s+ 1 и, по тем же причинам, в сверхэкономном хранении в памяти ЭВМ.

Пусть l ≥ 3 – простое число, θ = cos2π
l + isin2π

l = ei
2π
l и пусть

N(m) =

s∏
k=1

(
m1 +m2θ

k + ...+msθ
(s−1)k

)
,

где
s = l − 1,m = (m1, ...,ms) ∈ Zs.
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Алгоритм построения равномерно распределенных сеток:
Теорема А (Е. Баилов, Н. Темиргалиев [14]). Пусть даны l = s + 1 ≥ 3 – простое

число и r > 1. Пусть дано R > 1 и

E = ΓR ≡ {m = (m1, ...,ms) ∈ Zs : m1 . . .ms ≤ R} ,mj=max {1, |mj |} (j = 1, . . . , s) .

Тогда существуют простое p,

p ≡ 1(modl), p ≤ c(s)RlnsR ≡ T

и целое положительное число a, (a, p) = 1, a
p−1
l 6≡ 1(modp) , для отыскания которых

согласно алгоритму, состоящему в последовательном выполнении следующих действий
Шаг 1. Находится K (E) =

∏
m∈E N(m) ;

Шаг 2. Методом решета Эратосфена находятся все простые числа p из промежутка
(1, 18slnK(E)) ;
Шаг 3. Непосредственной проверкой каждого простого p, p ≡ 1(modl), p ∈ (1, 18s lnK(E))

находится такое р, которое не делит K(E);
Шаг 4. Находится целое a такое, что a

p−1
l 6≡ 1(modp)

достаточно выполнить T lnlnT элементарных арифметических операций, такие, что для
сетки

ξk (a) =

(
k

p
,

{
k

p
a
p−1
l

}
, ...,

{
k

p
a
p−1
l

(s−1)

})
(k = 1, ..., p)

имеет место соотношение

Ds (ξ1(a), ..., ξp(a)) <<
ln2sT

T
.

Однако реализация этого алгоритма является достаточно трудоемким процессом. Поэтому
обратимся к вычислительным экспериментам для нахождения сетки {ξk (a)}pk=1 .

Положим
br (x) =

∑
m=(m1,...,ms)∈Zs

(m1...ms)
−re2πi(m1x1+···+msxs),

где r > 1 и mj = max {1, |mj |} , j = 1, . . . , s.
Справедлива
Теорема В (М.Б. Сихов, Н. Темиргалиев [20]). При данных r > 1 и s = 1, 2, . . . ,

существуют положительные величины c1, c2, c3, β1 и β2 такие, что для всякого целого
положительного p и для всякого целочисленного вектора (a1, . . . , as) неравенство

c3 (s)
(lnp)

s−1
2

p
≤ Ds

[{(
a1

p
k, . . . ,

as
p
k

)}p
k=1

]
≤ c1 (s)

(lnp)β1(s)

p

выполнено тогда и только тогда, когда∣∣∣∣∣1p
p∑

k=1

br

(
a1

p
k, . . . ,

as
p
k

)
− 1

∣∣∣∣∣ ≤ c2 (s)
(lnp)β2(s)

p
.

Отсюда следует, что в тех случаях, когда функция br (x) может быть представлена в виде
элементарной функции, а к таковым относятся случаи целых положительных r , установление
равномерной распределенности сетки(

k

p
,

{
a
p−1
l

p
k

}
, ...,

{
a
p−1
l

(s−1)

p
k

})
(k = 1, 2, . . . , p) (25)

сводится к вычислению величины

∆(s, r, a, p) ≡

∣∣∣∣∣1− 1

p

p∑
k=1

br

(
k

p
,

{
a
p−1
l

p
k

}
, ...,

{
a
p−1
l

(s−1)

p
k

})∣∣∣∣∣ ,
где функция br(x) при целых положительных r есть алгебраический многочлен Бернулли.
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Выпишем функции br (x)
при r = 4 : ∑

m=(m1,...,ms)∈Zs
(m1...ms)

−4e2πi(m,x) =
s∏
j=1

[
1 +

π4

45
− 2π4

3
xj

2(1− xj)2

]
,

при r = 6 :∑
m=(m1,...,ms)∈Zs

(m1...ms)
−6e2πi(m,x) =

s∏
j=1

[
1 +

(2π)6

6!

(
1

42
− 1

2
x2
j +

5

2
x4
j − 3x5

j + x6
j

)]
,

при r = 8 :∑
m=(m1,...,ms)∈Zs

(m1...ms)
−8e2πi(m,x) =

s∏
j=1

1 +
(2π)8

8!

(
1

30
− 2

3
x2
j +

7

3
x4
j −

14

3
x6
j + 4x7

j − x8
j

)
,

при r = 10 :∑
m=(m1,...,ms)∈Zs

(m1...ms)
−10e2πi(m,x) =

s∏
j=1

[
1 +

(2π)10

10!

(
5

66
− 3

2
x2
j + 5x4

j − 7x6
j +

15

2
x8
j − x9

j + x10
j

)]
.

Результаты проведенных нами вычислительных экспериментов оформлены в виде таблицы,
где p – число узлов, a – целое число, такое что (a, p) = 1, a

p−1
l 6≡ 1 (modp ) .

Вычисления организованы в следующем порядке.
Даны простое l = s + 1 ≥ 3 и целое r ≥ 2, выписываются в порядке возрастания простые

числа p, p ≡ 1(mod l). Из них последовательно выбираются p , для каждого из которых
находится целое положительное число a = a(p, s) такое, что a

p−1
l 6≡ 1(mod p) . По полученному

числу a = a(p, s), находятся целые положительные числа a2 = a2 (a, p, s) , ..., as = as (a, p, s) ,

at ≡ a
p−1
l

(t−1) (mod p) , 1 ≤ at < p (t = 2, . . . s) , a1 ≡ 1,

затем вычисляются величины

∆ ≡ ∆ (s, r, p, a) = βp10−τ , 1 ≤ βp < 10.

Величины ∆ (s, r, p, a) разбиваются на группы с одинаковым показателем τ (τ = 1, 2, ...) ,
из которых в искомую таблицу выносятся значения коэффициентов a2, ..., as с наименьшим
числом узлов p и с наименьшей погрешностью ∆ .

В таблице нумерация коэффициентов производится последовательно по строкам. При
этом параметр a заносится во второй столбец (первый столбец отведен числу узлов p ),
коэффициент a2 – в третий столбец и т.д. до случая s переменных. Случаи s = 4, s =
10, s = 12 даны в Таблицах 4-6 (см. [11, 13]).

Таблица 4 – Значения a2, ..., as и ∆ при s = 6

p a a2 a3 a4 a5 a6 ∆ (s, r, p, a)
r = 4 r = 6

31 2 2 4 8 8.8Е-01 2Е-01 8.8Е-01 2Е-01
379 2 125 86 138 195 119 7.6Е-01 1.4Е-01
421 2 359 18 176 324 25 5.9Е-01 1.1Е-01
449 2 359 18 176 324 25 5.7Е-01 1.1Е-01
463 2 118 34 308 230 286 5.4Е-01 1.1Е-01
1009 2 105 935 302 431 859 9.3Е-02 5.6Е-03
... ... ... ... ... ... ... ... ...

75209 2 66662 23270 39115 63309 26732 9.8Е-07 1.2Е-10
94207 2 13212 85580 10546 1599 23620 8.5Е-07 1.6Е-10
109537 2 99712 28528 17583 96411 37901 3.3Е-07 2.5Е-11
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215503 2 57262 58499 206609 160864 149639 7.2Е-08 2.7Е-12
243671 2 135142 218714 155088 28773 182619 5.2Е-08 1.9Е-12
476981 2 8824 115073 388584 325788 465806 8.1Е-09 1.3Е-13
501019 2 130214 200798 32219 332779 353434 8.7Е-09 1Е-13
965189 2 863106 758445 225078 651860 166036 9.1Е-10 3.9Е-15

Таблица 5 – Значения a2, ..., as и ∆ при s = 10

p a a2, ..., a10 ∆ (s, r, p, a)
r = 4 r = 6 r = 8

23231 2 690, 9680, 9394, 21943, 5341, 572,
21544, 9883, 9538

7, 1Е-01 3.9Е-02 З.ЗЕ-03

25873 2 16747, 24562, 10860, 11103, 18563,
10466, 10400, 17637, 671

8.5Е-01 5.7Е-02 5Е-03

28183 2 18418, 12136, 1475, 26321, 4395,
5534, 15484, 535, 17763

6.5Е-01 4.2Е-02 3.7Е-03

29569 2 4699, 22127, 10169, 627, 18942, 5768,
18628, 8732, 19465

6.1Е-01 3.7Е-02 ЗЕ-03

117833 2 14328, 26498, 5418, 94990, 45570,
14307, 79109, 38125, 99045

9.3Е-02 3.6Е-03 2Е-04

298651 2 230692, 86617, 6507, 92918, 62382,
231258,147802, 52965, 192068

9.8Е-03 9Е-05 1.1Е-06

311323 2 275448, 6343, 21988, 72982, 308503,
298848, 169474, 258440, 286586

9Е-03 7.1Е-05 7.5Е-07

347887 2 103500, 113496, 83558, 130067,
99148, 195161, 148506, 27566, 59713

9.8Е-03 1.2Е-04 2.1Е-06

Таблица 6 – Значения a2, ..., as и ∆ при s = 12

p a a2, ..., a12 ∆ (s, r, p, a)
r = 4 r = 6 r = 8

232961 2 171101, 42214, 134770, 103107, 40199, 148535,
72662, 111175, 189142, 142105, 168035

5Е-01 2.2Е-02 1.6Е-03

246247 2 77327, 95275, 112179, 168711, 241931, 167600,
25590, 203285, 241950, 159331, 112086

7.5Е-01 3.6Е-02 2.6Е-03

251057 2 136464, 19264, 24649, 39450, 89549, 15261,
59289, 157, 85003, 11764, 104038

8.3Е-01 4.5Е-02 3.4Е-03

251707 2 44381, 65886, 6347, 26074, 93115, 11289,
120179, 244576, 166495, 103903, 46803

9.3Е-01 5.1Е-02 3.5Е-03

255763 2 211008, 129972, 176812, 86160, 47951, 60328,
110351, 24525, 118421, 244794, 108398

8.6Е-01 5.3Е-02 4.6Е-03

258337 2 257215, 225536, 118868, 190333, 91073,
117546, 123595, 53379, 42946, 123607, 39915

8Е-01 4.7Е-02 4.2Е-03

§5. Организация численного эксперимента по проверке статистической
регулярности вероятностной задачи «Парадокс Монти Холла». В данном параграфе
производятся вычислительные эксперименты для подтверждения или опровержения двух
теоретических вероятностей стратегий игрока. Излагаются принципы симмуляции
экспериментов на основе авторских линейного конгруэнтного генератора (LCG) и метода квази
Монте - Карло (QMС).
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10 . Алгоритм построения выборки элементарных исходов
Численное моделирование основывается на построении выборки

{ω(n) = (i(n), j(n), k(n), v(n))}Nn=1 ⊂ Ω,

в которой каждый элемент ω(n) представляет один допустимый исход эксперимента
Монти Холла. Генерация выборки осуществляется двумя независимыми методами:
методом линейного конгруэнтного генератора и методом квази Монте-Карло, использующим
одномерные координатные последовательности, полученные из сеток Коробова. В обоих
случаях исходы формируются синхронно по четырём координатам, и при каждой реализации
обеспечивается выполнение условий допустимости k(n) 6= i(n) и k(n) 6= j(n) , а также
требования ν(n) ∈ {j(n), tj(n),k(n)} .
Конкретизация «магических-волшебных» чисел линейного конгруэнтного

генератора. Применяется рекуррентная формула случайных целых неотрицательных чисел
Лехмера 1948 года максимального периода

xn+1 ≡ axn + c mod N,

с «магическими-волшебными» числами

a = 3, c = 12345, N = 231 = 2147483648, x0 = 0, (a− 1)τ ≡ 0 mod N, (a− 1)(τ−1) 6≡ 0 mod N,

попадающих при s = τ = 31 под Спектральный критерий Ковэю – Макферсона 1965 года

SC(2 ≤ s = τ) : N
2
s (1− (bs−1)N (−1/s))2 = (a− bs)2 ≤ ν2

s (a,N ; (a− 1)s = N) ≤

≤ a2 + 1 = N
2
s (1 + 2N−

1
s + 2N−

2
s ).

Из этой последовательности последовательно формируются четыре координаты
элементарного исхода

i(n) = (Xnmod 3 + 1), j(n) = (Xn+1mod 3) + 1.

После определения i(n) и j(n) выбирается номер шкатулки, которую должен открыть
ведущий. Если i(n) 6= j(n) , то ведущий обязан открыть единственную допустимую шкатулку,
и тогда k(n) определяется однозначно. Если же i(n) = j(n) , то существует две допустимые
шкатулки, и выбор между ними осуществляется с помощью следующего члена генератора
k(n) = u(Xn+2 mod 2), где функция u(·) отображает остаток {0, 1} в два доступных номера
шкатулок.

После выбора k(n) окончательное решение игрока генерируется независимым выбором
между двумя допустимыми значениями — его первоначальной шкатулкой j(n) и единственной
другой закрытой шкатулкой tj(n),k(n)

ν(n) = u(Xn+3 mod 2),

где u(·) выбирает один из двух элементов множества {j(n), tj(n),k(n)} .
Таким образом, метод LCG порождает допустимую последовательность исходов ω(n) ∈ Ω ,

полностью согласованную с вероятностной структурой модели.
Выбор QMC-последовательности. В QMC по Таблице 4 производится следующий отбор

параметров
p a a2 a3 a4 a5 a6 ∆ (s, r, p, a)

r = 4 r = 6
109537 2 99712 28528 17583 96411 37901 3.3Е-07 2.5Е-11

Для фиксированного простого числа p = 109537 и набора коэффициентов a3 = 28528, a4 =
17583, a5 = 96411, a6 = 37901 (из Таблицы 4)определяется четыре последовательности

Y (γ)
n ≡ (aγ+2n) mod p, (γ = 1, 2, 3, 4;n = 0, 1, 2, . . . ).
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Каждая из этих последовательностей служит источником дискретных равномерных
значений на множестве {0, 1, . . . , p− 1} . Элементарный исход формируется аналогично LCG-
методу, но с заменой Xn на четыре независимых координатных последовательности решётки

i(n) = (Y (1)
n mod 3) + 1, j(n) = (Y (2)

n mod 3) + 1.

Если i(n) 6= j(n) , то выбор ведущего однозначен, и k(n) определяется правилом игры.
Если i(n) = j(n) , то ведущему необходимо выбрать одну из двух допустимых шкатулок, и
этот выбор осуществляется по трёхмерной координате

k(n) = u(Y (3)
n mod 2).

Окончательное решение игрока формируется по четвёртой координате

ν(n) = u(Y (4)
n mod 2),

где функция u(·) отображает остаток {0, 1} в два элемента множества {j(n), tj(n),k(n)} .
Так же как и в LCG-методе, каждая четверка ω(n) автоматически принадлежит множеству

допустимых исходов Ω .
В обоих методах из одной исходной числовой последовательности строятся координаты

(i(n), j(n), k(n), v(n)) , причём:
– координаты i(n) и j(n) определяются по остатку по модулю 3;
– выбор ведущего k(n) вычисляется строго в соответствии с правилами игры и использует

остаток по модулю 2 лишь тогда, когда имеется два допустимых варианта;
– окончательный выбор игрока v(n) всегда генерируется как равновероятный выбор между

двумя значениями {j(n), tj(n),k(n)} .
В результате формируется выборка из N допустимых элементарных исходов

ω(1), ω(2), . . . , ω(N) ∈ Ω,

полностью согласованная с вероятностной структурой модели, построенной в §1. Эта выборка
далее используется для вычисления статистических частот событий C ∩H1 и C ∩H2 , а также
приближенных значений условных вероятностей выигрыша P (CH1) и P (CH2) .
Формирование экспериментальных данных. На основе алгоритма, описанного выше,

для каждого номера опыта n формируются исходные величины

Ani = i(n), Bn
j = j(n), V n

t = t(n)

где i(n) − номер шкатулки с призом, j(n) − первоначальный выбор игрока, а t (n) = tj(n),k(n)

− оставшаяся закрытой шкатулка, определяемая по тройке (i(n), j(n), k(n)) .
Эти три значения заносятся в строку с номером n Таблицы 7. Таблица 7 содержит исходные

данные каждого опыта и служит основанием для вычисления выигрышей по двум стратегиям
в Таблице 8.
На номере n эксперимента по данным Ani , Bn

j и V n
τ определяются результаты «1 —

выигрыш» и «0 — проигрыш» для двух стратегий поведения игрока.
Стратегия H1 “игрок сохраняет первоначальный выбор”. Окончательный выбор

равен j(n) . Сравнение производится с Ani = i(n) :
– если j(n) = i(n) , в таблицу заносится 1;
– если j(n) 6= i(n) , заносится 0.
Стратегия H2 “игрок меняет первоначальный выбор на оставивший ведущим

шкатулке”. Окончательный выбор равен V n
τ = τ(n) :

– если τ(n) = i(n) , заносится 1;
– если τ(n) 6= i(n) , заносится 0.
Эти две величины записываются в соответствующие графы Таблицы 8.
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Таблица 7 – Исходные данные эксперимента

n-номер Распределение шкатулок
эксперимента 1 2 3 4

Ani Bn
j Mn

k V n
τ

1 2 1 3 1
2 1 1 2 3
3 1 1 3 1
4 1 3 2 3
5 3 3 1 2
... ... ... ... ...

99998 3 3 2 1
99999 3 1 2 1
100000 1 2 3 2

Таблица 8 – Результаты двух стратегий

n -номер 1 2 3 4 5 6
эксперимента Ani Bn

j V n
τ Выигрыш

/проигрыш если
игрок сохраняет
свой выбор Bn

j

Выигрыш /проигрыш
если игрок меняет
свой выбор на V n

t

Выигрыш
состоялся-1 или
не состоялся-0

1 2 1 1 0 1 0
2 1 1 3 1 0 0
3 1 1 1 1 0 1
4 1 3 3 0 1 0
5 3 3 2 1 0 0
... ... ... ... ... ... ...

99995 2 1 1 0 1 0
99996 1 3 1 0 1 1
99997 3 3 1 1 0 0
99998 3 1 1 0 1 0
99999 1 2 2 0 1 0

После заполнения Таблицы 8 вычисляются накопительные суммы выигрышей Σ0 (n) и
выигрышей при двух стратегий

Σ0 (n) =
n∑

m=1

IC

(
ω(m)

)
,Σ1 (n) =

n∑
m=1

IH1∩C

(
ω(m)

)
,Σ2 (n) =

n∑
m=1

IH2∩C

(
ω(m)

)
,

и общая сумма
Σ(n) = Σ1(n) + Σ2(n).

Далее вычисляются накопительные относительные частоты

f0 (n) =
Σ0 (n)

Σ (n)
, f1(n) =

Σ1(n)

Σ(n)
, f2(n) =

Σ2(n)

Σ(n)
,

которые приведены в Таблице 9.
Таблица 9 – Накопительные суммы и относительные частоты

К
ол

ич
ес
тв
о

эк
сп
ер

им
ен

то
в

7 8 9 10 11
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Общее количество
выигрышей при
«Игрок сохраняет
свой выбор» в
проведенном
количестве
экспериментов

Общее количество
выигрышей при
«Игрок меняет
свой выбор на
выбор ведущего»
в проведенном
количестве
экспериментов

Общее
количество
выигрышей в
проведенном
количестве
экспериментов

Частота
выигрыша
при «Игрок
сохраняет
свой выбор» в
проведенном
количестве
экспериментов

Частота
выигрыша при
«Игрок меняет
свой выбор на
выбор ведущего»
в проведенном
количестве
экспериментов

n
∑

1(n)
∑

2(n)
∑

1(n) +
∑

2(n)
∑

1(n)∑
1(n)+

∑
2(n)

∑
2(n)∑

1(n)+
∑

2(n)

1 0 1 1 0 1
2 1 1 2 0, 5 0, 5
3 2 1 3 0, 666667 0, 333333
4 2 2 4 0, 5 0, 5
5 3 2 5 0, 6 0, 4
... ... ... ... ... ...

99996 33301 66695 99996 0, 333023 0, 666977
99997 33301 66696 99997 0, 33302 0, 66698
99998 33302 66696 99998 0, 333027 0, 666973
99999 33302 66697 99999 0, 333023 0, 666977
100000 33302 66698 100000 0, 33302 0, 66698

В нижеследующих Рисунках 2-5 приведены относительные частоты выигрышей при двух
стратегиях в зависимости от количества проведенных опытов N.

Рисунок 2 – Относительная частота
выигрыша, реализованная по авторскому
линейному конгруэнтному генератору – LCG
при стратегиях H1 и H2 .

Рисунок 3 – Относительная частота
выигрыша, реализованная по методу квази
Монте - Карло – QMC при стратегиях H1 и
H2 .

Вычислительные эксперименты показывают, что относительные частоты по двум стратегиям
с ростом увеличения количество испытаний стабилизируются в окрестности условных
вероятностей выигрыша.

1. В обоих экспериментах наблюдается сходимость частот к теоретическим вероятностям 1
3

и 2
3 .
2. Алгебраический генератор демонстрирует более равномерное покрытие интервала и

меньшие флуктуации.
3. Оба метода подтверждают классический результат задачи Монти Холла, при этом Alg

даёт более устойчивое приближение.
Заключительные замечания. Канторовская теория множеств показывает, что

трансцендентных чисел мощности континуума неограничено больше, чем счетного количества
алгебраических (напомним, что все действительные числа делятся на два класса –
алгебраические числа, которые являются корнями алгебраического многочлена с целыми
коэффициентами, а остальные – трансцендентные), при всем этом к какому из этих классов
принадлежит данное действительное число, например, число eπ

2 или πe
2
, относится к
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Рисунок 4 – Относительная частота
выигрыша, реализованная по авторскому
линейному конгруэнтному генератору –
LCG при стратегиях H1 и H2 и без учета
стратегий.

Рисунок 5 – Относительная частота
выигрыша, реализованная по методу квази
Монте - Карло – QMC при стратегиях H1 и
H2 и без учета стратегий.

труднейшим задачам теории чисел, и каждый нетривиальный результат становится событием
в математической жизни.

Тот же эффект массовости, когда объектов много, но указывать конкретно один из них
затруднительно, относится и к датчикам случайных чисел.

Применения случайности необозримы, включая использованную здесь «Экспериментальное
подтверждение или опровержение теоретического вероятностного результата (и не только)
получается серией компьютерных реализаций объекта рассмотрения посредством алгоритма
случайности как гаранта «общего случая», а не специальной подобранности». Итоговый
вывод определяется по степени близости к теоретической вероятности частоты подтверждения
свойства изучения.

Так была построена вероятностная модель «Парадокс Монти Холла» со статистическим
подтверждением. Однако в данную тематику термин «статистическое подтверждение» вносит
неопределенность – всяческих случайностей различной природы построено много, поэтому
каждый раз надо указывать, на основании какой случайности получен данный статистический
вывод, при всей своей массовости никогда нельзя прийти к итоговому окончательному
статистическому обоснованию.

Исследованная в данной статье проблема «Парадокс Монти Холла» с теоретическим
решением и последующим статистическим подтверждением могла бы иметь обратное
направление: сначала статистический эксперимент выдает результат в вероятностях 1

3 и 2
3 ,

который принимается в виде гипотезы с последующим теоретическим обоснованием.
Есть и такой сценарий теоретического и статистического: гипотеза Коллатца «Взяв любое

целое положительное число, если оно четное, делим его пополам, а если нечетное — умножаем
на 3 и прибавляем 1, и так далее, — то в конечном итоге мы всегда придем к числу 1, и
после этого начнётся цикл 4→ 2→ 1 » на сегодня не имеет теоретического решения, вместе с
тем Теренс Тао получил статистическое подтверждение в 99% этой гипотезы [21].

По-видимому, небезынтересна тематика, объединяющая теоретические исследования с
соответствующими статистическими подтверждениями в обоих направлениях – от теории
к статистике и от поставленной проблемы с отсутствием даже гипотез к статистическим
экспериментам, которые могут прояснить перспективы дальнейшего. Варианты таких
сочетаний можно продолжить, во всем этом определенно одно – в качестве статистических
методов исследований, наряду с многими другими, предлагаются показавшие свою
эффективность в модели «Парадокс Мотни Холла» авторские датчики случайных чисел
"Линейный конгруэнтный генератор" и "Метод квази Монте-Карло".
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Монти Холл парадоксының статистикалық жүйелiлiгiнiң авторлық кездейсоқтық
алгоритмдерiмен расталынылуы

А.Ж. Жұбанышева, Н.Ж. Наурызбаев, Ғ.Е. Тауғынбаева, Қ.Б. Нұртазина,
Н.Темiрғалиев

Л.Н. Гумилев атындағы Еуразия ұлттық университетi Теориялық математика және ғылыми
есептеулер институты , Сәтпаев 2, Астана, 010008, Қазақстан

Аннотация. Мақалада ХХ ғасырдың 70-жылдарының ортасынан берi ықтималдықтар
теориясында ерекшелiгiмен танымал «Монти Холл парадоксы» атты мәселесi қарастырылады.
Ол кездейсоқтықты iштей сезiну мен сандық-статистикалық эксперименттер арқылы
расталатын қатаң математикалық дәлелдеме арасындағы айырмашылықты айқын көрсетедi.
Ғылыми тұрғыдан негiзделген нақты деректердiң өзi кей жағдайда адамның қалыптасқан
дүниетанымы мен көзқарасын өзгерте алмайтын және ойыншының жүлденi оңтайлы
таңдауын математикалық негiздеу екi түрлi теориялық-ықтималдық сипатта ұсынылған
есептiң шешiмiн интуитивтi қабылдауға когнитивтiк диссонанстың тағы бiр көрiнiсi ретiнде
түсiндiрiлетiн жан-жақты логикалық талдау жүргiзiлген. Ол екеуiнiң әрқайсысы белгiлi
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ықтималдық-теориялық қорытындыларға қосыла отырып, сандық эксперименттермен тағы
да статистикалық тексеруден өтедi.

Жұмыстың ерекшелiгi классикалық Монте-Карло (Mersenne Twister, PCG) әдiстерiн, Sobel,
Halton, Faure, Niederreiter түрiндегi аз мәндi дискрeпанcты квази Монте-Карло әдiстерiн және
локалды оптималды Сызықтық конгруэнттi генераторды қолдану арқылы алынған белгiлi
теориялық-эксперименттiк қорытындылармен қатар сандық эксперименттер бұрын соңды
қолданылмаған кездейсоқ сандар генераторларын, атап айтқанда, сызықтық конгруэнттi
генератордың жақсартылмайтын авторлық алгоритмдерi мен p бөлiмi «кiшкене» болатын
( p қуатты тор түйiнiнiң a k/p координатасының p бөлiмi «аз» болып саналу мағынасында)
анықталуы аса үнемдi Коробов торлары арқылы берiлген квази Монте-Карло әдiсiн қолдану
болып табылады.

Жүргiзiлген есептеулер бұл екi алгоритмнiң де ойыншы бастапқы таңдауын сақтаған
жағдайда да, жүргiзушi қалдырған жабық есiкке ауысқан жағдайда да, сынақтар саны
(ойындар саны) артқан сайын теориялық ұтыс ықтималдығына жуықтауда статистикалық
заңдылықты растайтынын көрсеттi (мұны керi бағытта да – авторлық кездейсоқтық
генераторлар жоғары сапасының дәлелi ретiнде де қабылдауға болады). Мақалада
ықтималдық қорытындылардың статистикалық заңдылықпен расталуы Монти Холл ойыны
мысалында да орын алатындығы көрсетiледi.
Ключевые слова: Монти Холл парадоксы, интуиция, ақыл-ойға негiзделген түсiнiк,

парадокс, детерминистiк заңдылық, кездейсоқтық, статистикалық заңдылық, сызықтық
конгруэнттi генератор, квази Монте-Карло әдiсi.

Statistical Regularity in the Monty Hall Paradox Using Proprietary Random
Algorithms
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Temirgaliev

Institute of Theoretical Mathematics and Scientific Computations, L.N. Gumilyov Eurasian National
University, 2 Satpayev Street, Astana, 010008, Kazakhstan

Abstract. The article examines a classical problem in probability theory that has been widely
discussed since the mid-1970s, known as the Monty Hall Paradox. It illustrates the discrepancy
between the subjective perception of randomness and objective mathematical proofs, which are sup-
ported by appropriate computational and statistical experiments. A detailed logical analysis of the
intuitive perception of the problem’s solution is carried out and interpreted as another manifestation
of cognitive dissonance, where even scientifically justified facts fail to change an individual’s view-
point formed within their established natural-scientific worldview. The mathematical justification of
the player’s optimal prize-selection strategy is presented in two probabilistic interpretations. Each
of these interpretations aligns with well-known results of probability theory, which have once again
been subjected to statistical verification through numerical experiments.

A distinctive feature of this study is that, in addition to the established theoretical and experimen-
tal results obtained using classical Monte Carlo methods (Mersenne Twister, PCG), quasi–Monte
Carlo methods with refinements such as Sobol, Halton, Faure, and Niederreiter low-discrepancy
sequences, as well as a linear congruential generator with local optimality properties, the computa-
tional procedures were also performed using previously unused random number generators. These
include proprietary algorithms of a linear congruential generator in a non-improvable formulation
and a quasi Monte - Carlo method based on ultra-economical Korobov lattices with small denomi-
nators p . In this context, the coordinate ak/p of a lattice node of size p with denominator p is
considered “small” within admissible limits, whereas in random algorithms, there is no restriction on
the length of decimal expansions relative to p .

The computations demonstrate that both of these randomness algorithms also confirm statisti-
cal regularity in convergence to the theoretical winning probabilities, both when the player keeps
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their initial choice and when they switch to the remaining unopened door, as the number of trials
(games) increases. This result may also be interpreted inversely as confirmation of the quality of the
proprietary randomness generators employed.

The article demonstrates the existence of statistical regularity in the Monty Hall game and serves
as an illustrative example of the formation of probabilistic conclusions supported by statistical
validation.
Keywords: Monty Hall paradox, intuition, common sense, paradox, deterministic regularity,

randomness, statistical regularity, linear congruential generator, quasi Monte - Carlo method.
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