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Abstract. We consider a free boundary problem for a one-dimensional system of Buckley-Leverett
equations, describing the displacement of oil by a suspension. For this problem we formulated
conditions for the strong decay of the discontinuity of the initial oil concentration. We will prove
that the phenomenological Buckley-Leverett model does not adequately describe the physical process
under consideration. To do this, we will study the problem of the decay of a discontinuity in the
initial concentration of oil, when at rest in one half of the domain there is oil, and in the other half
of the domain there is a suspension, and these domains are separated by an impenetrable partition.
At the initial moment of time, the partition is removed and a non-negative suspension velocity is
maintained at the injection wells. An accurate analysis of the unique solution to the Buckley-Leverett
model shows that at the initial moment of time, oil begins to displace the suspension, resulting in
the formation of a zone of mixing of oil and suspension. If the velocity of the suspension at the
injection wells is high enough, then at some point in time the natural option of displacing oil by the
suspension begins to be realized.

Keywords: Free boundary problems, transport equations, displacement of oil by suspension,
strong discontinuity conditions.

DOI: https://doi.org/10.32523/3007-0155/bulmathenu.2024 /2.1

2000 Mathematics Subject Classification: 35Q35.

1. Introduction and main results

Free boundary problems for differential equations are some of the most difficult in the theory
of partial differential equations. In these problems, along with solving differential equations, it is
necessary to determine the domain in which this solution is sought. As a rule, this domain (boundary)
is determined from an additional boundary condition at the free boundary. In the theory of free
boundary problems, the Stefan problem, the Masket problem, and the Heele-Shaw problem [I]-[5]
for the heat or Laplace equations are well known. These problems are formulated quite simply, but so
far the existence of a classical solution has been proven only locallty in time (excluding some simple
cases). As for systems of differential equations, here we should note the works of V. A. Solonnikov
for free boundary problems to the Navier-Stokes system [6], [7] and A. Friedman [§].

But, as in the case of one equation, here it is possible to prove only local existence of a classical
solution [6], [7], or limit oneself to a phenomenological model that describes the physical process at
the macroscopic level [§].
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Separately, there is a large class of free boundary problems for the equations of gas dynamics and
hydrodynamics of an ideal incompressible fluid. These problems are well studied and have a rich
history [9]-[11].

We will consider the Buckley—Leverett model, formulated in [I2] and describing the displacement
of oil by a suspension in the pore space of the absolutely rigid solid skeleton at the macroscopic
level. Let us recall that such models are called Phenomenological.

The existence and uniqueness of a generalized solution to the system of Buckley—Leverett equations
for smooth data of the problem was proved by S. N. Antontsev and V. N. Monakhov [13]. We will
be interested in the structure of the weak solution of the Buckley—Leverett system of equations for
a discontinuous initial oil concentration. In the terminology of L.V. Ovsyannikov (Appendix A in
[14]), such a problem is called Problem on the decay of strong discontinuity.

For simplicity of presentation, we restrict ourselves to the case of one spatial variable.

We look for the solution to the Buckley—Leverett system in the domain Q7 = Q x (0,7, Q =
(0,1) C R = (—00,00), consisting of Darcy’s system of filtration

k 8pol
ol — —— Jo y 1
Vol m;zfl(c) o (1)
k Opsp
sp — — — Js 2
Up ,Ufspfp(C) ax ( )
and laws of conservation of mass 5 5
Vol
o (me) + 52 =0, 3)
0 ov
Zm(1 — 2P 4
gl =)+ — (4)
The system — is completed with the state equations
kpo — kpsp = Qlcap G,y (5)
fol(c) = Qg C, fsp(c) = Qgp (1 - C) (6)
and following boundary and initial conditions
Usp(0,t) =0, v(1,t) =0, (7)
c(z,0) = (). (8)

In — ¢ is a concentration of oil in the pore liquid, (1 —¢) is a concentration of suspension
in the pore liquid, v, is the oil velocity, vy, is the suspension velocity, p, is the oil pressure,
Dsp 1s the suspension pressure, i, is the dimensionless oil viscosity and jig, is the dimensionless
suspension viscosity.

The positive constants oy, asp and oy are supposed to be known.

First of all, we transform the equations () - @ into a convenient for us form:

& k Opo fsp k 8psp

+ =0, 9
Mo Oz g  Ox 9)
fol 8psp dc fsp 8psp
- cap I =V, 1
(2oL B2 4 oo 50) + 22 1 22 — 0 (10)
Opo Aeapllol fsp dc
k = —, 11
Ox (,uol fsp + Hsp fol) 0z ( )
Ips Qcapltsp fol Jc
k=2 =— br -, 12
Oz (ﬂol fsp + Hsp fol) Ox ( )
Uol:_&k apol _ acapfolfsp Oc — M Cug,
Mol Ox (Mol fsp + Usp fol) Ox
Jc
Upl = _Saol(c)ailg (13)
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fSp apsp Qcap fol fsp oc
Vep = — k = — =m (1l — c)ugy,
P Hsp Ox (Mol fsp + Ksp fol) Ox ( ) b
Oc
Usp = QOSp(C)aix, (14)
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c(l—c¢)
e _—— = 1 — s fd o s 1
o(0) = 0 S0 = o= (1= puyle) = () (15
0 0 0 0
ac + %(cuol) =0, a(l —c)+ %((1 — c)usp) =0, (16)
Oc 0 Oc
5% %(@(C)%)- (17)
n @
Qp = m~! Qol Olsp Qeapy @ = fol Osp + fsp Qo b = fiop Ctgp < a. (18)

The Buckley—Leverett model and its analogs (see [I5] - [I7] and literature cited there) are phe-
nomenological mathematical models and serve as the basis model for existing hydrodynamic sim-
ulators, such as Eclipse, Black Oil (Schlumberger), Tempest (Roxar), VIP (Landmark) and
TimeZYX (Standard Oil and Trust).

Note that a hydrodynamic simulator is a certain Scale (set) of mathematical models of an oil
reservoir of varying degrees of accuracy, supplemented with digital characteristics of physical proper-
ties, such as density and elastic properties of the solid skeleton, soil, density and viscosity of filtered
liquids, as well as geometric characteristics of the reservoir in consideration, such as the structure of
the solid skeleton, the geometry of the domain occupied by the reservoir, and visualization programs
for numerical implementations.

Existing simulators, according to their purpose, must adequately reflect the simulated physical
process.

Do existing simulators solve this problem?

Let’s reformulate the question differently.

Since the basis of any hydrodynamic simulator is the corresponding scale of mathematical models
(ideally!), the question can be formulated as follows:

Do the existing mathematical models underlying existing hydrodynamic simulators
adequately reflect the simulated physical process?

Only adequate mathematical models will be able to optimize the oil production process, and only
with adequate modeling can the main task of a hydrodynamic simulator be solved - this, of course,
is Mazximum benefit during the exploitation of a field.

A positive or negative answer depends on what exactly Adequacy of a mathematical model
for a given physical process means.

To do this, it is necessary to formulate Adequacy Criteria of the mathematical model.

In the case of phenomenological models, the criterion of adequacy can only be experiment. Is
experiment a criterion of adequacy?

The answer is NO.

In fact, it makes no sense to talk about an experiment, since in any phenomenological model
there are enough free parameters and even functions that are in no way related to the geometry
of the reservoir (porosity and structure of the pore space) or to the physical characteristics of the
displacement process (viscosity and density of filtered liquids and density and elastic properties of
the solid skeleton). Therefore, by varying the indicated constants and functions, one can achieve
agreement with any experiment!

Let us recall that by its definition, any phenomenological mathematical model is a set of postu-
lates (axioms), expressed using differential equations, supplemented by corresponding boundary and
initial conditions, and defining relations (equalities). In this case, the characteristic dimensions in
macroscopic models are meters or tens of meters. Because of this, these models do not distinguish
either the microstructure of a continuous medium, or the free boundary separating liquids, or the
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peculiarities of the interaction of fluids with the solid skeleton of the soil (adhesion or sliding con-
ditions), since in such a model at each point of the continuous medium there is both rock (hard
skeleton ) together with the liquid in the pores of this skeleton, and the free boundary separating
the various components of the medium. All such models are built on the same principle. Fluid
dynamics, as a rule, are controlled by the Darcy filtration equation system or some modification
thereof, and the interaction of fluids is governed by the laws of mass conservation for each fluid. But
all fundamentally important changes occur precisely at the microscopic level, corresponding to the
average size of pores or cracks in rocks, while any of the proposed macroscopic models operates on
completely different (orders of magnitude larger) scales, which explains their diversity. The authors
of such models simply do not have an accurate method for describing physical processes at the mi-
croscopic level based on the fundamental laws of Newtonian continuum mechanics, nor the ability to
take into account the microstructure of rocks in macroscopic models. Therefore, they have to limit
themselves to certain speculative considerations (postulates) formulated by the authors themselves.

In view of the above, a natural question arises: if there are several macroscopic models describing
the same physical process, which of them most adequately reflects this process? Where is the
criterion of truth here?

The answer to this question is quite complex and is beyond the scope of this article. Let’s just say
that in order to derive a macroscopic model adequate to the physical process under consideration, it is
first necessary, following the principles formulated in the works of J. B. Keller [18] and E. Sanchez-
Palencia [19], to describe this process based on the equations of Newton’s classical mechanics at
the microscopic level (average size of tens of microns) and only then, using mathematically strict
averaging (homogenization), derive a macroscopic model that most accurately describes this physical
process.

In this publication we will prove that the phenomenological Buckley-Leverett model does not
adequately describe the physical process under consideration. To do this, we will study the problem
of the decay of a discontinuity of the initial concentration of oil, when at rest in one half of the
domain there is oil, and in the other half of the domain there is a suspension, and these domains are
separated by an impenetrable partition. At the initial moment of time, the partition is removed and
at the injection wells a non-negative suspension velocity is maintained. An accurate analysis of the
unique solution to the Buckley-Leverett model shows that at the initial moment of time, oil begins
to displace the suspension, resulting in the formation of a zone of mixing of oil and suspension. If the
velocity of the suspension at injection wells is high enough, then at some point in time the natural
option of displacing oil by suspension begins to take place.

Everywhere below we use the notation of functional spaces and norms in these spaces adopted in
[20] and [21].

2. Auxiliary statements

2.1. Domain and boundaries

As Qu(t) ={z € Q:0 < Ry(t) < x <1} we denote the domain occupied by oil, as Q,,(t) =
{x € Q: Ry(t) < x < Ryi(t) < x < 1} ~the domain occupied by the mixture of oil and suspension
and as Qg(t) = {2 € 2:0 <z < Ry} we denote the domain occupied by the suspension.

Here R,(t) is the boundary between Q,(t) and Q,,(t) and R, (t) is the boundary between
Qn(t) and Qy(t) .

t=T t=T t=T
Let also Qo7 = | Qa(t), Qng =] (), Qpr =] p(t),
t=0 t=0 t=0
To(t) ={z € Q:x=Ry(t)}, Tsp(t) ={z € Q:2=Ry(t)},
=T t=T
T = |J Tep(t) and T = | Tar(t).
t=0 t=0
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2.2. Derivation of boundary conditions on strong discontinuities

Suppose that during the diffusion of oil and suspension between domain €2, 7, occupied by oil
and domain ), 7, occupied by suspension, instantly formed domain 2, 7, occupied by mixture
of oil and suspension.

According supposition ¢ =1 in Qyr and ¢ =0 in Q7.

Next we will derive boundary conditions on strong discontinuities I'yp 7 and I'y 7 following [14].

Recall, that for the case of one spacial variable for equation

oOF 0 ~_

5 + o (Fu)=0 (19)
(equality (A.6.4) in [5]) where F = F,, as (x,t) € Qspr, F=F as (x,t) € Qur and F = F
as (x,t) € Qor, V=25 s (x,t) €Qgpr, V=0 as (x,t) € U1 U V=10, as (z,t) € Qg 1, the
jump of functions F and ¥ at the strong discontinuities Fopr={xeQ=(0,1): 2= Ry(t)} are
defined from relations

(02 @l = Fap(Rep(0), 1) (“2(0) — wsp(Repl0), 1))~
— F(Rup(0). 1) (1) — u(Rop (1), 1)) = 0 (20)
(equality (A6.12) in [14]).
In the same way we get the equality
(), = F(Ra(), 002 () — (R (1), 1))~
= Fu(Ba(0),)( 2 (1) — g (R (8),8)) = 0 (21)

dt
on the boundary I'y(¢). B B
In section 4 we prove that ¢ =0 in (), ¢ =1 in Qu(t) and
c(z,t) >0 as Rep(t) <o < Ry(t) and 0 < t < T. (22)
Thus, for equations in the form
Jdc 0 .
= =0 23
o4 () =0, (23)

where

~ 0 in Qg(t),
¢ in Q,(t),

- 0 in Qg (1),
Ul = —Usp 0 Dy (1),

and on the boundary I'y,(t) holds true equality

A ) = e(Rap(1), (T — ) =0, (24)

which implies
dRg,
F Ut (Rsp(t),t) < 0. (25)
In the same way for equation , where
- {c in Q,(1),

T iy,

= ) Ul = ~usp in Q, (1),
o in Qg (t)
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we get, iR
ol
C(Rol(t)vt>( dt - usp) =0, (26)
and, consequently,
dR,
dtl = ugp(Ror(t), 1) > 0. (27)

2.3. Spaces BV(2) and L (0,7;BV(2)) of functions of bounded variation. Helly’s se-
lection principle

In the present publication we restrict ourself with spaces BV(Q) and Lo (0,7;BV(€)) of func-
tions of bounded variation in Q@ C R [22].

Definition 1. We call the closure of all infinitely smooth functions u(z) in the norm

du
lull By (o) = (/(|u(x)| + | =) dwdt) (28)
0 X
as the space of functions of bounded variation BV().

Definition 2. The closure of all infinitely smooth functions w(z,t) in the norm
ou
Jullvia) = gm, [ (1.0 + 5 dod) (29)

is called the space of functions of bounded variation L. (07 T; IBV(Q)) .

Theorem 1. [22]

1) A function u(x) belongs to the space IBSV(Q)) if and only if there exists some constant K > 0
such that

/ lu(z + h) — u(z)|dz < K |h] (30)
Q
forall h e R.

2)A function u(z,t) belongs to the space Loo(0,T;BV(Q)) if and only if there exists some con-
stant K > 0 such that

h,t) — t)|de < K |h 31
s, [ e+ hot) = e, 0lde < Kb (31)
for all heR.
Let 11
0 for0§w<§——,
n
1 1 1 r 1
A@)=8 Z@—g+-) for—~ <z <+, (32)
2 2 n ? 1 2 n
1 forx > -+ —,
2 n

Lemma 1. The sequence {cg} 18 monotone increasing sequence of monotone increasing functions
cg € BV(Q) and
2 — Plgy — 0 as n — oo. (33)
The proof of statements follows from the definition of functions ¢? and Theorem .
Definition 3. We say that the function u(x,t), bounded in Ly(£27), possesses the time derivative

Ou € Ly (0,T; ng(Q))  if

ai
y// u L vt < Mu\// Ve 2dudt|®
Qp Ot Qp

for all functions £ € Wé’l(QT) with some positive constant M, independent of £.
Remark 1. We denote the norm of an element ¢ in Lo (0,7;W5'(Q2)) as H<p|]W2_1 .
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Lemma 2. (Helly’s selection principle.) Let sequences {uy} is bounded in the space BV () ,and
the sequence itself is bounded in Lo () :

lun| < K, [Jullpy) < K. (34)

Then there exists some subsequence of the sequence {u,} convergent almost everywhere in Lo(£2) .
[23].

Here and below, K will denote constants independent of IV .

Consequence 1. Let the sequence {u,} converges almost everywhere in Q and 0 < w, < 1.
Then it converges in Lo (£2) .

Lemma 3. Let sequences {u,} is bounded in the space BV () and the sequence of derivatives

{8un} is bounded in the space Lo (0,T;W5'(Q2)) .

Then there exists some subsequence of the sequence {u,} strongly convergent in Lo(Qr) .

The proof of this lemma repeats the proof of the compactness lemma in Lions [21].

3. Main result

Definition 4. A function ¢ € BV(Qr) is called a weak solution to the problem - if

to
/ ez, t) &(z, to dac—l—/ / mc—i—go()gcgg)d dt =

- [ C@)ew,0)da + / (6L, s (1) — £(0, tyuo(£)) ) d (35)
Q

0
for all infinitely smooth functions £(z,t) in Qp.

Theorem 2. The problem - has a unique weak solution.

4. Proof of Theorem

4.1. Construction of approximate solutions

Let ¢p(z,t) be solution to the approximate diffusion equation

dcy, 0 1, dcp
T =) T )5 (36)
satisfying initial condition
and boundary conditions
1.,0¢c, .
mn ‘Jt - - 7t == U, ) = y 1 38
(p(en(it) +—)) 5 (G 1) = 0, i =0 (38)

The problem |D has an unique monotone increasing classical solution ¢, € C>'(Qr) N
Loo (0, T3 BV(Q2)) for all n>0.

The existence of such solution follows from [I], and its monotonicity follows from maximum
principle.

Indeed, the following statement holds true

Lemma 4. For all n >0 ﬁ(x,t) > a>0 in Qp, where a =const>0.

ox

Proof. Note, that in accordance with [I] functions ¢, are infinitely smooth in variables = and ¢ in
the domain Q for ¢ > 0 and satisfy boundary conditions in a usual sense.

Consequently, the nonlinear heat equation (36| can be differentiated with respect to all variables
the required number of times and integration by parts can be used.
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First of all, we use the obvious maximum principle
0< ¢ < 1. (39)
8cn

Next we define new functions w,, = —

ox
The direct differentiation of ( in variable x gives us

W, 2wn w, o
a&t - ((90(0”) t )aa 5 3¢ (cn) wn 8590 +¢" () (wn)?, (40)
((,O(C(j,t)) + %)wn(j,t) =0, j=0,1, (41)

2
and the strict maximum principle [I], immediately guarantees us the required result.
Turning to the equalities we obtain for the function (z = ¢(c), where z = a—bc, following
relations:

d2
Let’s show that dQOn (y) < 0 for 0 < y < 1, that, taking into account the boundary conditions

acad 2a ad 2aca
P'(c) = (=), () = P —1, w(s) = -2 < 2% <,
22 z d
202
©"(c) =b*y"(2) < — dgéc(l = a = const <0, (43)
which completes the proof of the lemma. ([
4.2. Limiting procedure as n — oo
Let o)
enlat 1 OxXn 1. 9c¢,
t) = —)d = —)—. 44
) = [ e+ D 5 = () + )5 (14)
Then equation takes the form
dcy, aQXn
o 45
ot 0x?’ (4)

which we will rewrite as an equivalent integral identity

to 86 82§
/an(a:,to)f(w,to)dx+/o /Q(—mcnat— " 2)d xdt =

_ / O (@)E(x, 0)da. (46)
Q

Lemma 5. The sequence {c,} contains convergent in Lo(Qr) subsequence.

The proof of the lemma follows from Lemma [21]
Renumbering the sequence {c,} we may assume that it converges in La(Q27) to some function

¢ € Loo (0, T; BV(Q)) .

Consequence 2. The sequence {x,} converges in Ly(Q) to function x € Lo (0,T;BV(£2)) and

(1) ox de
et = [ e 55 = (47)

The proof of the statement follows from the definition of Yy, .

Lemma 6. The sequence {c,} converges in Lao(Qr) to the weak solution ¢ € Lo (0,T;BV(Q)) to
the problem f.
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Proof. To do that we represent the integral identity as

—_

S U W

10

11

12

13

14

15

16

17

18

worooog 0%
/an(m,to)ﬁ(x,to)dx—/o /Q(Cnazf+ e 2)dzdt

= / A (x)&(z,0)dz. (48)
Q

Passing to the limit as n — oo we arrive at the desired identity

/ (z,t9) € mtodaz/to/ (c= +xa§)dxdt=
/ (z,t0) & a:todx—/to/ %—%g—i)da:dt:
/ c(x,to) &(z, to)dx — /tO/ c)gigi)d:cdt =
= [ (x)¢(x,0)d. (49)
J

The uniqueness result proves in a usual way.
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A. M. MeiipmaHoB
Honocgpepa uncmumymu, "Honocgepa” cepiwmecmiei, 117 v, 050020, Aamamuw, Kaszaxcman

Bakuu-JIeBeperT MoaesiHaeri 6acTankbl MyHall KOHIIEHTPANUMSIChI Y3iyiHiH a3aiobl

Annoranus. MyHaiipl CyCIIEH3USMEH BIFBLICTBHIPYABI CHIATTAaUTHIH Bakiun-JleBepert Temmeysepiumiy 6ip esmremai 2xkyiteci
VIIiH €epKiH IIeKapaJibIK ecernTepi KapacTbIpbLIaibl. Byl Mocesie yiniH MyHaiablH OacTalKbl KOHIEHTPAIUSICBIHBIH, CeKipicTeri
KaTThI y3ijic maprrapsl Ty>KbIpbiMjaiarad. Makanana Bakiau-JleBepert (heHOMEHOIOTUSIIBIK, MOJEJ KaPACTBIPBLIBII OTBIPDFAH
(UBMKAJBIK IPOIECT yPBIC CATIATTAN aJIMadThIHIBIFBL JaJtesaesai. O yiria 6ip-6ipiMeH apajiacnaiTeiHIal KajakamMmeH 6eJ1iHreH
afiMakThIH Oip »KapTHICHIH/A THIHBIIITHIK KYyii/le MyHai, ajl eKiHII »KapThICBIH/A CYCIEH3UsI OOJIFaH/IaFbl MYHAMIbIH GaCTAIIKbL
KOHIIEHTPAIUSCHIHIAFbl Y31UIICTIH bIABIpay Macesieci 3epTTesieii. BacTankpl yakpITTa KaJIKa KOMBIIBII, aii/lay CKBasKUHAJIAPbIHIA
CYCIEH3USIHBIH, TEPIC eMeC KbLIIAaMIBIFbI CaKTaIa bl. bakiu-JleBeperT MozeiHiH XKaJIFbI3 el MiHe Ky Pri3iJireH HaKThl AaHAJII3
OacTalKpl yaKbITTa MYHall CYCIEH3USHBI BIFBICTBIPA OTBIPHII, HOTHXKECIH/e MYHall MEH CYyCIE€H3UsHBIH apaJiacy aiiMarsl naiiga
Gonanepl. Erep aiifnay yHFbIMAJIApPBIHIA CYCIIEH3USIHBIH KO3FAJIy >KBLIIaM/IbIFBI YKETKIIIKTI »Korapbl Oojica, oHua Gesrinai 6ip
yakKpITTa TabUFaThIHA Cail CyCleH3Us KepPICiHIlle MyHalIbl bIFBICThIPA OacTalIbI.

Tvyiiin cesnmep: Epkin mekapaJst ecentep, TachIMaiay TEHAEYJIEPi, MyHaHIbI CyCIEH3UsIMEH BIFLICTBIPY, KATTHI y3lmicreri
mapTTap.

A. M. MeiipmanoB
Hremumym uonocgepwr, Cadosodueckoe mosapuusecmeo "Honocgepa, 0.117, 050020, Aamamo, Kazaxcmar

VYMeHbIIEeHuEe HAaYaJIbHOr'o Pa3pbiBa KOHIIEHTPpanuu He(l:)TI/I B MoaeJinu BaK.]'II/I-J-[eBepeTTa

AnnoTtanusi. PaccmarpuBaercsd 3ajada co CBOOOIHOI IpaHUIIE Uil OJHOMEPHON cucTeMbl ypaBHeHuit Bakiu-JleBeperra,
OIMCHIBAIONIEH BbITeCHeHHE HedTH cycnensueir. Jlnsa sToit 3ama4un chOPMySIMPOBAHBI YCIOBUS CHJIBHOTO Pa3pblBa CKadYKa
HaYaJIbHON KOHIleHTpauyu HedTu. B crarpe gokazaHo, 4To (eHOMeHoJIornyecKast Mojesb bBakim-JleBeperra HeajgekBaTHO
OIHUCBHIBAET PACCMATPUBAEMBIN (DU3MIECKUN IPOIECC. s sToro m3ydaercsa 3ajada O paclaje pas3pblBa HadaJbHON
KOHIeHTpaunu HedTH, KOIZa B OLHOHM IOJOBHHE OOJACTH IOKOUTCA HedTb, a B APYroil IoJIOBHHE OOJACTH - CyCIEH3HS,
u 3TU 00JIaCTH pa3JiesIeHbl HEIPOHUIIAEMOIl IIeperoposikoil. B Ha4yajbHBII MOMEHT BpEMEHHU II€ePErOpojKa yJaJIsdeTcs W Ha
HarHeTAaTe/IbHBIX CKBAXKMHAX [TOJEPXKUBAETC HEOTPUIATE/IbHASI CKOPOCTb CyCIIeH3nn. TOYHBIN aHAJIN3 €IMHCTBEHHOI'O PEIIeHUS
Mogenn Bakiu-JleBepeTTa IOKa3bIBAET, YTO B HAYAJIbHBII MOMEHT BpEMEHN He(DTh HAUNHAET BBITECHATD CYyCIIEH3UIO, B PE3yJIbTaTe
qero obpa3yercsi 30Ha CMeInBaHusi HepTU U CyCIIeH3uU. KCu CKOPOCTh JBUKEHUsI CYCIIEH3MH HA HArHETATEJIbHBIX CKBAXKHMHAX
JIOCTATOYHO BBICOKA, TO B KaKOW-TO MOMEHT BPEMEHH HAYMHAET PEeaJIM30BBIBATHCS €CTECTBEHHBIN BapUaHT BBITECHEHUsI HedDTH
cycreHaueil.

KuroueBble ciaoBa: 3aja4u co CBOOOIHBIMU I'PAHUIIAMI, YPABHEHHS IEPEHOCA, BBITECHEHNE HEMTH CYCIEH3UEH, YCAOBUS Ha
CHJIBHOM pa3pbIBe.
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