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proximating functions in Holder-Nikol’skii spaces of mixed smoothness HZ (I?) on the unit
cube I := [0,1]¢. For any function f € HZ(I%), we explicitly construct nonadaptive and
adaptive deep ReLU neural networks having an output that approximates f with a prescribed
accuracy ¢, and prove dimension-dependent bounds for the computation complexity of this ap-
proximation, characterized by the size and depth of this deep ReLLU neural network, explicitly
in d and e. Our results show the advantage of the adaptive method of approximation by deep
ReLU neural networks over nonadaptive one.
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1. INTRODUCTION

In recent years, deep neural networks have been successfully applied to a striking variety of
Machine Learning problems, including computer vision [14], natural language processing [25],
speech recognition and image classification [15]. In approximation theory, there has been a
number of interesting papers that address the role of depth and architecture of deep neural
networks in approximating sets of functions which have a very special regularity properties

such as analytic functions |7, 16], differentiable functions [19, 20|, oscillatory functions [12],
functions in isotropic Sobolev or Besov spaces |1, 6, 10, 13, 27], functions with dominating mixed
smoothness [17, 23| or in approximating solutions to partial differential equations [9, 18, 22], to

mention just a few. The main advantage of deep neural networks in approximation functions
is that that they can output compositions of functions cheaply and consequently improve the
convergence rate of approximation error, see [0, 7, 26]. We refer the reader to recent surveys
[12, 20] for concept and results in deep neural network approximation theory.

In the recent paper [1|, we have studied the approximation by deep ReLU neural networks,
of functions from the Holder-Zygmund space of mixed smoothness defined on the unit cube
I¢ := [0,1]? when the dimension d may be very large. The approximation error is measured
in the norm of the isotropic Sobolev space. For any function f from Holder-Zygmund space of
mixed smoothness, we explicitly construct a deep ReLLU neural network having an output that
approximates f with a prescribed accuracy e, and prove tight dimension-dependent estimates
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of the computation complexity of this approximation, characterized as the size and depth of this
deep ReLLU neural network, explicitly in d and €.

As a continuation of this paper the present paper investigates nonadaptive and adaptive high-
dimensional approximation by deep ReLU neural networks for functions from Hélder-Nikol’skii
spaces of mixed smoothness HZ (I?) on the unit cube I%. The approximation error is measured
in the norm of Loo(]Id) . In this context, we pay attention on the computation complexity of the
deep ReLU networks, characterized by the size and depth of this deep ReLU neural network,
explicitly in d and tolerance €. A key tool for explicit construction of approximation methods
by deep ReLU networks for functions in H (I?) is truncations of tensorized Faber series.

The space HZ (I%) of our interest is defined as follows. For univariate functions f on I :=
[0,1], the difference operator Ay is defined by

Apflz) == f(z+h) = f(z),
for all z and h > 0 such that z,x +h € 1. If u is a subset of {1,...,d}, for multivariate
functions f on I? the mixed difference operator Ap,y is defined by

Apy = H Ap,, Apg=1d,
€U
for all  and h such that =,x + h € I?. Here the univariate operator Ap, is applied to the
univariate function f by considering f as a function of variable x; with the other variables
held fixed. If 0 < a <1, we introduce the semi-norm |f|gq () for functions f € C(1%) by

e ) = sup [ 2 “IAnu(F)llcmnm
h> S
(in particular, [flga (o) = [Ifllc@a)), where (h,u) = {x € 1¢: 2;+h; € I,i € u}. The
Holder-Nikol’skii space HY (I?) of mixed smoothness a then is defined as the set of functions
f € C(1%) for which the norm

||f||Hgo(]Id) = uclﬁax

geeey

is finite. From the definition we have that H2 (I4) ¢ C(I?). Denote by C(I?) the set of all
functions f € C(I¢) vanishing on the boundary 9I¢ of I¢, i.e., the set of all functions f € C(I%)
such that f(z) =0 if 2; =0 or z; =1 for some index j € {1,...,d}. Denote by U%? the
set of all functions f in the intersection H2 (I%) := H2 (I7) N C(I) such that £l g ey < 1.
Notation. As usual, N is the natural numbers, Z is the integers, R is the real numbers and
No:={s€Z:s>0}; Ny = NoU{—1}. The letter d is reserved for the underlying dimension
of R?, N? etc. Vectorial quantities are denoted by boldface letters and x; denotes the ith
coordinate of € R?, i.e., @ := (x1,...,24). For & € R? we denote |x|; := |21| + ...+ |24]
and 2% := (2%1,...,2%) . For k,s € NZ, we denote 27%s := (27%3sy,...,27kdg5;) . Universal
constants or constants depending on parameter « are denoted by C' or C, , respectively.

2. DEEpP RELU NEURAL NETWORKS

In this section we introduce necessary definitions and elementary facts on deep ReLU neural
networks. There is a wide variety of neural network architectures and each of them is adapted
to specific tasks. We only consider feed-forward deep ReLU neural networks for which only
connections between neighboring layers are allowed.

Definition 1. Let d,L € N, L > 2, Ny = d, and Ny,...,N;, € N. Let W’ = (wf,j)7
¢=1,...,L,be N;x N;_; matrix, and b° = (bﬁ) e RVe
e A neural network ® with input dimension d and L layers is a sequence of matrix-vector
tuples
o= ((Whb'),...,( whh)).
We will use the following terminology.
— The number of layers L(®) = L is the depth of @
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input 15t ond 3rd 4th output
layer layer layer layer layer layer

Ficure 1 — The graph associated to a deep neural network with input dimension 3 and 5 layers.

— Ny(®) = maxy—g . {N¢} is the width of ®; N(®) = (No, N1,...,Nr) the di-
mension of P ;
12

— The real numbers w; ; and b§ are edge and node weights of @, respectively;

— The number of nonzero weights fwﬁ ; and b§ is the size of ® and denoted by W (®);

— When L(®) > 3, & is called a deep neural network, and otherwise, a shallow
neural network.

e A neural network architecture A with input dimension d and L layers is a neural

network
A= (WhLb,...,( Wwhh)),
where elements of W* and b°, £=1,...,L, arein {0,1}.

The above defined deep neural network is sometimes called standard networks to distinguish
with networks allowing for connections of neurons in non-neighboring layers. A deep neural
network can be visualized in a graph. The graph associated with a deep neural network &
defined in Definition 1 consists of L + 1 layers which are numbered from 0 to L. The ¢th
layer has Ny nodes which are numbered from 1 to Np. If wf,j # 0, then there is an edge
connecting the node j in the layer £ — 1 to the node ¢ in the layer £.

In Figure 1 we illustrate a deep neural network with input dimension 3 and 5 layers.

Definition 2. Given L € N, L > 2, and a deep neural network architecture A =
((WI,Bl), ol (WL,BL)) . We say that a neural network & = ((Wl,bl), ol (WL,bL)) has
architecture A if

e N(®)=N(A)
f7j

and £=1,...,L. Here @Z{j are entries of W' and Bf are elements of #, {=1,...,L.

e w: . =0 implies wfvj =0, 5?20 implies bf:O forall i=1,...,Np, j=1,...,Ny_1,
For a given deep neural network ® = ((Wl, bl),..., (W, bL)) , there exists a unique deep
neural network architecture A = ((Wl, El), A (WL, EL)) such that
e N(®)=N(A)
¢ W, =0 = wl;=0,b=0 ¢ b{=0forall i=1,...,No, j=1,....,No,
and /=1,...,L.
We call this architecture A the minimal architecture of ® (this definition is proper in the sense

that any architecture of ® is also an architecture of A .)

A deep neural network is associated with an activation function which calculates output at
each node. The choice of activation function depends on the problem under consideration. In this
paper we focus our attention on ReLU activation function defined by o(t) := max{¢,0},t € R.
We will use the notation o(x) := (o(21),...,0(xq)) for & € RY.
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Definition 3. A deep ReLU neural network with input dimension d and L layers is a neural
network
= ((Whb'),...,(Whbh))

in which the following computation scheme is implemented

2=z e Rd,

2hi=o(W'2 4 bY, (=1,...,L—1,

b= whelt L pl,
We call 20 the input and with an ambiguity denote ®(z) := 2” the output of ® and in some
places we identify a deep ReLLU neural network with its output.

From the above definition, a deep ReLU neural network @ is a function mapping from R¢ to
RNz | Several deep ReLU neural networks can be combined to form a larger deep ReLU neural
network whose output is a linear combination or composition of outputs of sub-networks. In the
following, we introduce parallelization and concatenation, see, e.g., [1] and [19].

Lemma 1 (Parallelization). Let N € N, Q ¢ R? be a bounded set, ANeER, j=1,...,N.
Let ®;, j=1,...,N be deep ReLU neural networks with input dimension d. Then we can
explicitly construct a deep ReLU neural network denoted by ® so that

N
(x) => Noj(w), xe
j=1

Moreover we have
L(®) = max {L(®;)} and W(®) <3N max W(®;).
Jj=L..,N j=1,..,N
The network ® s called the parallelization network of ®;, j=1,...,N.

Lemma 2 (Concatenation). Let ®1 and ®o be two ReLU neural networks such that output
layer of ®1 has the same dimension as input layer of ®o. Then, we can explicitly construct a
ReLU neural network ® such that ®(x) = ®o(®1(x)) for © € RY. Moreover we have

L(®) = L(®1) + L(®y)  and  W(D) < 2W(Py) + 2W (Py).

The network ® in this lemma is called the concatenation network of ®1 and P, .

3. TENSORIZED FABER SERIES AND INTERPOLATION SAMPLING RECOVERY

In this section we recall a decomposition of continuous functions on the unit cube I¢ by
tensorized Faber series, interpolation approximation by truncated Faber series.

Let o(x) = (1 — |z —1])+, = €I, be the hat function (the piece-wise linear B-spline with
knots at 0,1,2), where z4 := max(x,0) for x € R. For k € N_; we define the functions ¢y,
by

Sak,s(x) = @(2k+1x_28)7 kEO, s € Z(k) = {0717-~-72k_1}7 (1)
and
v_1s(x) =9 —s+1), se Z(-1):={0,1}. (2)
For a univariate function f on I, k€ N_;, and s € Z(k) we define
1 _
Mes(f) = =585 F(27%8), k>0, Aas(f) = f(s),
where

Apf(@) = flz+2h) = 2f(z +h) + f(),
for all x and h > 0 such that z,z+h €l. If m € Ny we put

Ro(f) =Y ar(f),  alf) =D MslH)hs
k=0

seZ(k)
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For k € No, we define the functions ¢, . € C(I) by
Or.s(T) = o2 e —s+1), se Zo(k):={1,..., 28 —1},
and for f € C(I) one can check
Ru(f) = Y f@"'s)dh
SEZx(m)
Hence R, (f) € C(I) interpolates f at the points 2~ s, s € Z,(m), that is,
Rn(f)(27™s) = f(27™1s), s € Z.(m).

Put Z(k) = ijlZ(kj) . For ke N%,  s€ Z(k), we introduce the tensorized Faber basis

by
Phs(®) = Physy (T1) - phy sy (Ta), @ €T (3)

We also define the linear functionals Mg s for multivariate function f on I, ke Nil, and
s € Z(k) by

d
Me,s(f) = H ;55 ()
=1

where the univariate functional Ag; s, is applied to the univariate function f by considering f
as a function of variable x; with the other variables held fixed. We have the following lemma.

Lemma 3. The tensorized Faber system {¢ns: k € NY s € Z(k)} is a basis in C(I?).
Moreover, every function f € C(]Id) can be represented by the Faber series

f="Y a) ()= Y Mes(f)ors (4)
keN? | seZ(k)

converging in the norm of C(I?) .

When d =1, the system (1), (2) and above result goes back to Faber [3]. The decomposition
(4) when d = 2 and an extension for function spaces with mixed smoothness was obtained
independently in [24, Theorem 3.10] and in [2, Section 4]. A generalization for the case d > 2
and also to B-spline interpolation and quasi-interpolation representation was established in [2, 3].

When f e U, Me,s(f) =0 if kj = —1 for some j € {1,...,d}, hence we can write
f=> a
keNd

with unconditional convergence in C(I¢), see [21, Theorem 3.13]. In this case it holds the
following estimate

Ak,s(f)] < 279270l
for ke Ng, se Z(k).
For f € C(I%), we define the operator R,, by

Ru(f)i= Y a(f) = D > MeslHers (5)

k| <m lkli<m seZ(k)

The truncated Faber series Ry, (f) € C(I%) completely determined by values of f at the points
27k=1s for (k,s) € G4m), where

G4(m) := {(k,s): |kli <m, s€ Z(k)},
Z.(k) := H;lzl Z.(kj) and 1= (1,...,1) € N®. Moreover, R,,(f) interpolates f at the points
27k=1g for (k,s) € G4m), ie.,
Ru()27Fs) = (27" s), (kys) € GY(m).
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The following lemma gives a d-dependent estimate of the approximation error by R,,(f) of
feUs?, see [5].

Lemma 4. Let d,m €N, and 0 < a < 1. Then we have

o —am (M+d o _
sup [If = R )ll o) < 27 B2 (d 1), B =@ 1)L
feug? -

For univariate functions f € C (I), let the operator Ty, k € Ny, be defined by
Ti(f) == f — Ri-1(f)

with the operator Ry defined as in (5) and the convention R_; := 0. From this defini-
tion we have Tpy is the identity operator. Notice that for f € (?géjl, it holds the inequality
Tk ()| ey < 2.

For a multivariate function f € CO'(]Id) , the tensor product operator T, k = (ki1,...,kq) €
Ng, is defined by

d
Te(f) = [[ Te, (),
j=1

where the univariate operator Ty, is applied to the univariate function f by considering f as
a function of variable x; with the other variables held fixed. The following lemma was proved
in [5].

Lemma 5. Let n,d € N, a € (0,1], and f € UL, Then f — R.(f) can be represented in
the following special form

d—1
F=Ra(f)=>_ > F, (6)

J=0 |k;l1<n
where Fr, := T, 11)er and

Fry = Tk, et (ar; (f)), G=1,...,d =1,

-----

4. DEEP RELU NETWORK APPROXIMATIONS

In this section, we construct nonadaptive and adaptive methods of approximation by deep
ReLU neural networks of functions f € U%% . Since the case d = 1 was already studied in
[1, 6, 10] for nonadaptive method and in [6, 27] for adaptive method, in this paper we focus our
attention on the case d > 2. We first recall a result of approximating tensorized Faber functions
¢k.s by deep ReLU neural networks, see [4].

Lemma 6. For every dimension d > 2, 6 € (0,1) and for the d-variate hat functions s ,
ke N¢, sec Z(k), defined as in (3), we can explicitly construct a deep neural network ®s(pps)
so that

HSOk,s - q)l;(sok,S)HLoo(Hd) < o

and
W (®5(pr,s)) < Cdlog(ds™) and  L(®s(pr.s)) < Clogdlog(ds™r).
Moreover, supp ®5(¢k,s) C supp ¢k,s -

The above result allows us to construct a deep ReLU network ®.(R,(f)) to approxi-
mate R,(f). The network ®.(R,(f)) is constructed by parallelization of the networks

{®5(k,s) } k| <n, sez(k) and has output
|k|1<n s€Z(k)

Lemma 6 and 1 allow us to control number of weights and length of ®.(R,,(f)). More precisely
we have the following.
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Lemma 7. Let de N, d>2, ne N, a€ (0,1] and € € (0,1). Then for every f € U we
can explicitly construct a deep ReLU network ®.(R,(f)) of the same architecture A. so that

1B (f) = @e(Ba() || oy < e

Moreover, we have

w (@) < ca (" 1T Y togtante ) @
and
L(®.(R,(f))) < Clogdlog(dB%™). (8)

The estimates (7) and (8) also hold for W(A;) and L(A.) respectively.

We are now in the position to formulate our nonadaptive result. Nonadaptivity means that
architecture of approximating deep ReLLU neural networks is the same for all f € Ut

Theorem 1. Let d € N, d>2, and a € (0,1]. Then there is g9 = eo(d, ) € (0,1] such that
for every e € (0,e9) we can explicitly construct a deep neural network architecture A, with the

following property. For every f € ﬁggd, we can explicitly construct a deep ReL U neural network
®.(f) having the architecture A. such that

1f = @(NllLpqey Se

Moreover, we have

Kf
(d— 1)

=41
W(A:) < Cad( ) ea log(25*1)(d*1)(i+1)+1 (9)

and
L(A.) < Clogdlog(2e™1),
where K = BY(@tD4a~1 with B given in Lemma 4 and C, depends only on « .

Let us explain the idea of proving this theorem. Our technique is first to approximate f by
its truncation of Faber series R, (f) and then approximate R,(f) by a deep ReLU network.
With ¢’ =¢/2 in Lemma 7 and ®.(f) = ®(R,(f)) we have

1f = @Ol oqey < N = BalHll Lo @ay + 1R — Per (Rn ()l £ ey
n -+ d> €

d—1 2

< 2—04Bd2—om < 5

Then we choose n such that 2-*Bd42-on (Zfi{) < 5. With this choice of n, Lemma 7 gives
estimates for number of weighs and length of ®.(f).

To complete the proof, we notice that ®.(f) has the architecture A, which is defined as the
minimal architecture of the deep ReLU neural network ®. obtained by parallelization of the

networks {®5(k,s) } k), <n,sez(k) With the output

o(w)= > > Bslprs)(x), mel

|k|1<n s€Z(k)

The advantage of the above method is that the deep ReLLU neural networks are easily con-
structed and they have the same architecture for all functions in US? . Since it uses R, (f) as
a mediate approximation, a disadvantage is that with the same accuracy the computation com-
plexity of deep ReLLU networks is not better than that when approximating functions in U
by linear methods. To overcome this disadvantage we develop a technique used in [27] and [0]
for the univariate case. This method reduces the computation complexity of the approximating
deep ReLLU networks comparing with that of the nonadaptive method given in Theorem 1. Our
results on adaptive methods are read as follows.
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Theorem 2. Let d € N, d > 2, a € (0,1]. Then there is €9 = eo(d, ) € (0,1/2] such that
for every € € (0,e9) and for every f € Ugo’d we can explicitly construct an adaptive deep ReLU
neural network ®.(f) so that

1f = @c(f)l ey < e

Moreover, we have

Kd O\ at? 1y
W(®(f)) < Cad2< " _21)'> e~ (log(2e™") log log(2e 1)) )@= (10)
and (a41)(d—-1)
d—1—a a —
L(®.(f)) < Che i (log(2e 1)) T~ (loglog(2e 1)) dn
where

K> = 4(2°73B) 572 (o log(2a~1)) /2
and positive constants Cy, C!, depend on « only.
Comparing (9) and (10) we find the later estimation improves log(2e~!). Notice that terms
in (9) and (10) which depend on dimension d only decay as fast as super exponential in d.
We sketch a plan of proof of this theorem. Let f € U%® and e € (0,g0) (with some
go € (0,1)) be given. Using the writing
f= Bu(f) + (f = Bu(/)),

we explicitly construct deep ReLU neural networks @, /(R (f)) and @, ,5(f — R, (f)) to ap-
proximate the terms R, (f) and f — R,(f) with accuracy ¢/2. We then construct a deep
ReLU neural network ®.(f) as a parallelization of ®_/5(R,(f)) and ®./5(f — R,,(f)) with an
output

D.(f)(@) = Depp(Ra(f))(®) + Pcpa(f — Ru(f)) ().
Then we have

1f = ()l L ey < e

For construction of the network ®_/5(R,(f)) we use Lemma 7. To construct a desired deep
ReLU neural network ®_/5(f — Rn(f)) our strategy is to employ the special representation in
Lemma 5. Using parallelization and concatenation of deep ReLLU neural networks in Lemma
1 and 2 we explicitly construct deep Rel.U neural networks CI’E/(ij) to approximate each
term Fj. with accuracy €’ in the sum in (6). The network ®_,(f — R, (f)) is defined as a
parallelization of ®./(Fg;), |kj[1 <n, j=0,...,d—1 with the output

d—1
(I)E/Q(f - Rn(f))(x) = Z Z (I)s/ (Fk])(w)

=0 |kj|1<n
In the next step we chose ¢ depending on & such that
H (f - Rn(f)) - q>5/2 (f - Rn(f)) HLOO(]Id) < 5/2'
Finally, the size and depth of ®.(f) are estimated explicitly in d and e from the estimation
of sizes and depths of ®_/5(Ry(f)) and @/ (Fg;).
5. AN APPLICATION TO NUMERICAL SOLVING PDESs

In this section, we apply the results on approximation by deep ReLU neural networks in
Section 4 for numerical approximation of the solution to elliptic PDEs.
Consider a modeled diffusion elliptic equation

—div(a(x)Vu(z)) = f(x) in 1% ulga = 0,

with a function f and a diffusion coeflicient a having sufficient regularity. Denote by V :=
HY(19) = W}(I9) the energy space. If a satisfies the ellipticity assumption

d
O<amin§a(m)§amax<oov z el
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by the well-known Lax-Milgram lemma, there exists a unique solution u € V which satisfies
the variational equation

/Hd a(x)Vu(z) - Vu(z)dzx = y fl@v(x)de YveV.

We want to approximate the solution u by deep ReLU neural networks. The approximation
error is measured in the norm of L., (I¢). Assume for the modeled case that a and f have
Holder-Nikol’skii mixed smoothness 1, i.e., a,f € H;O(Hd). Then, the solution w has at
least mixed derivatives 9%u with « € Ng, max;—i, 4a; < 1, belonging to Ly(1%) [11], and
therefore, by embedding for function spaces of mixed smoothness, see |21, Theorem 2.4.1|, u
belongs to ﬁ;f(]ld) . For simplicity we assume that u € 00142 .

For the nonadaptive approximation, according to Theorem 1, for any & > 0 sufficient small
one can explicitly construct a deep neural network architecture A. independent of f and a,
and a deep ReLU neural network ®.(u) having the architecture A. such that

[ = @ (u)l L ey <&,

d

3
W(A:) < C’d<(dK11)'> e~ 2 log(2e~1)3d— 1+

and
L(A.) < Clogdlog(2e™),
where K := 8(v/2 +1)%/2.
For the adaptive approximation, according to Theorem 2, for any ¢ > 0 sufficient small one
can explicitly construct an adaptive deep ReLU neural network ®.(u) so that

lu = @e(u)| Lo @) <&
3(d—1)

d 6

W (P (u)) < Cd? ((d[521)'> 6_2(log(25_1) log log(2s_1)) ,
and

3(d—1)

(loglog(2e™ 1))@,

L(®.(u)) < C"E_%(log(Zs_l))%d_3
where Ky := 16((2 + v/2))'/3.
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. 3yur !, B. K. Hryea 2, M. C. Tao 3

L Bvemmam yammous yrusepcumemi, AKnapammaots mernoioeuaiap unemumymaot, Xanot, Bvemmam
2 Konik otcone KOMMYHRUKGUUA yHusepcumems, Ipzeni eviavmdap daxyavmemi, Xanot, Bvemmnam
3 Xowe Jyx ynusepcumemi, XKapamotrvicmany evtavmoaps, garyavmemi, Tranvroa, Boemmam

ReLU Tepen HelPOHABIK >KeJlijiepi 6oMbIHIIA KONl eJiHieM/i >KYbIKTayIblH, €CelNTey KypJAeJijiri TypaJsbl

Amnsortanusi: Makanaga [¢ := [0, 1]d 6ipJsiik KyObIHIa apaJac Tericrikti HS (]Id) Tomnbaep-Hukosbekuit KeHicriringeri
dyukuusiapapl kybikray yiria ReLU TepeH HelpoHABIK >KeJiijiepiHiH ecenTey Kypjesurri 3eprrenred. Ke3 kesrex
f e HY (Hd) dyurumAcs yurin f -Ti 6eplireH € mIKIEH YKYBIKTAWTHIH IILIFBIC CUTHAJIBI 6ap aJalTUBTI eMeC YKoHe
amantuBTi ReLU Tepen HeiipoHapIK »keisisepi Kypbuiabl »koHe ocbl ReLU Tepen HeMpOHIBIK KejiciHiH esimeMi MeH
TEPEHIr apKblIbl CHUIIATTAJATHIH XKYBIKTayJAbIH €eCcenTey KypAesiiiriniy 6aransaynapbl d »KoHe € IaMaJjapblHAH TOYeJsI/Ii
OOoJIaTBIHABIFBL JpJesaeHeni. 3eprrey HoTmxKesnepi ReLLU TepeH HEHpPOHIBIK >KejijiepiMeH >KYBIKTay/IbIH aJalTUBTI 9/1ici
aJAIITUBTI eMecC d/IiCKe KaparaH/a apTbIKIIbLIBIFBIH KOPCETTI.

Tyiiin cesgep: ReLU repen HeifpoHIBIK »KeJlici; ecenTeyaiH KypAeisiri; Kem esmeMIl KybIKTay; apajiac TeriCTiKTi
T'énbnep-Hukonbckuit Keyicriri.

. 3yur !, B. K. Hryea 2, M. C. Tao 3

L Unemumym undopmaruormvir mexnoaoeutd, Boemnamcruti nayuonasvhoili yrusepcumem, Xanot, Bvemmam
2 Daxyavmem GyHOGMENMANLHOLT HAYK YHUSEPCUMEMA MPAHCNOPMA U KoMMynukayud Xanot, Bvemmam
3 Daxyavmem ecmecmeennvr nayx Yrnusepcumema Xowe ok, Tranvroa, Bvemmam

O CJI0KHOCTH BBIYNCJIEHUN MHOTOMEPHOI anmpokcuManuu riyGokumu HelipouubiMu cetsimu ReLU

AnHoTanusi: B crarbe wucciemyercs BBIYUCIUTENbHAs CJIOXKHOCTH IIybokux Heiponubix cereit ReLU mma
annpokcuMaruu GyHKIuil B npoctpancTax [€npaepa-Hukoabckoro co cMerranuoii riaakocteo HE (]Id) Ha €JUHUIHOM
ky6e I := [0, l]d . Hus mo6oit dynkmun f € HE (]Id) , CTPOSATCs HeaJAlITUBHbIE U aJIallTUBHBIE IVIyOOKHE HEUPOHHBIE
ceru ReLU, umeronue BbIXOJHBIE CUTHAJIBI, TpUOIUKaomme f ¢ 3aJaHHOW TOYHOCTBIO € , U JOKa3bIBAETCsl, YTO OIEHKU
BBIYNCJIUTEILHON CJIOXKHOCTHU NPUOJINXKEHNSI, XapaKTePU3YIOIUecs pa3MepoM U IVIyOMHOMN 3Toi ri1yboKoil HEpOHHOI ceTn
ReLU, saBucsar or d u &. Pe3yabrarbl MOKa3bIBAIOT IIPEUMYINECTBO AJAITHBHONO METOAA ANIMPOKCUMAIUNA TIyOOKUMHI
"efipouabimu ceraMu ReLU Haj Hea anTUBHBIM METOIOM.

KuaroueBsbie cioBa: [my6okasi meiiponnasi cerb ReLU; Bblumc/mTe/bHAsT CJIOXKHOCTH; MHOIMOMEDHOE IIPUOIUKEHUE;
ITpocrpancrBo ['énbuepa-HukoabcKoro cMermanHom riiaKoCTH.
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