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1. INTRODUCTION

The main object of this paper is the Kantorovich norm, so we start with its definition. Let
(X, p) be a metric space. Consider the linear space M(X) of all signed Borel measures o on
X such that ¢(X) = 0 and the function =z — p(z,z¢) is integrable with respect to the total
variation |o| of o for all zp € X .

Definition 1. The Kantorovich norm is the norm || - ||k on the space My(X) defined by

||u||K=sup{ /. fdu:feupl(X)}, i€ Mo(X),

where

Lip(X) = {f: X 5 R, |f(2) = f()] < pla.y) Yo,y € X .

In this paper we consider the uniform convexity of the Kantorovich norm on subspaces of the
space Mo(X). First, we show that in general the Kantorovich norm on all of M(X) is not
uniformly convex. Next, we prove that in case of measures on an interval the Kantorovich norm
is uniformly convex on some infinite-dimensional subspace of the space of measures. Finally,
we give an example of an infinite compact set for which the Kantorovich norm is not uniformly
convex on any infinite-dimensional subspace of measures.

Let us mention an important result on isometric embeddings (see Corollary 1 on p. 311 in [1]),
which we will use below.

Theorem 1. If 1 <p < g <2, then the space L[0,1] is isometric to a subspace in LP[0,1].

Let us also state two classical results on uniform convexity.
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Theorem 2. If 1 < p < oo, then the space LP[0,1] is uniformly conver.

Theorem 3 (Milman—Pettis). Every uniformly convexr Banach space is reflexive.

2. MAIN RESULTS

We note that Mo(X) with the Kantorovich norm is not, in general, a uniformly convex space.
This follows obviously from the lemma below. This lemma also gives a necessary condition for the
strict convexity of a subspace of measures. Intuitively, this condition means that the subspace
should not contain measures with supports that are "far" from each other.

Lemma 1. Let two measures p,v € My(X) be given. Suppose that there are two balls By, (a)
and By, (b) in X such that supp(n) C By, (a),supp(v) C By, (b) and p(a,b) > 3(r1 + r2).
Then

il + vl = [l + vl
Proof Take f; € Lip'(B, (a)) and gy € Lip*(B,,(b)) such that

/ Judpt HuuK\ e
By (a)

1
/T gkdy — ||I/||K’ < E

2 (b

| =

and

We can assume that miny fr = 0, since f; can be replaced by fr — ¢ and the integral

/X Jedu

does not change. Then, due to the Lipschitz property, we have ‘max x | fr] — 0} < 2rq.
Similarly, |maXX |gk|’ < 2ry. Then for for all x € B,,(a) and all y € B,,(b) we have

|fr(@) = geW)| < | fe(@)] + |ge(y)| < 271 + 22 < p(a,b) — p(a, ) — p(b,y) < p(a,y).

Next we use the Tietze extension theorem and construct a function hy € Lip'(X) such that for
all © € By, (a) we have hi(z) = fr(z) and for all y € B,,(b) we have hi(y) = gr(y) .
Hence

o

‘ [ ) = il - ||v||z<\ <

Therefore, we have

2
ot vz swp | hdGer) > [ et ) = i+ Il - 3
heLip! (X) J X X

If we let £ — oo, then we get

i+ vl = llullx + lIvlx

which completes the proof.

We now consider our question for an interval and show that for measures on it there exists
an infinite-dimensional uniformly convex subspace. However, first we make a remark about the
calculation of the Kantorovich norm in case of measures on an interval.

Remark 1. The Kantorovich norm for measures p € Myla,b] can be calculated as the L!-
norm for their distribution functions.
Indeed, we use the formula (see [1])

di (P, Py) = /OO |®p, (t) — Pp,(t)]dt,
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which is valid for probability distributions P;, P» and their distribution functions ®p, , ®p, .
We have the Jordan decomposition of pu € Myla,b] into positive and negative parts. Using it
and, if necessary, normalizing its components, we obtain

Imllx = Iy — m_|lx = /

a,

imla,t] — m_[a,t]|dt = / im[a, t]|dt.
[a.b]

Theorem 4. There exists an infinite-dimensional subspace in the space Myl0,1] that is uni-
formly convex in the Kantorovich norm.

Proof By Theorem 1 there exists a space Y C L1[0, 1] isometric to LP[0,1] if 1 <p < 2.
By Theorem 2 the space Y is uniformly convex. It follows from Remark 1 that it suffices to
take any linear subspace spanned by vectors from Y regarded as distribution functions for the
required space of measures.

So, we have an example of a compact set for which there exists a uniformly convex infinite-
dimensional subspace of the space of measures. Of course, not all compacts have this property.
For example, for finite compact sets, the space of measures is finite-dimensional and, therefore,
cannot contain any infinite-dimensional subspaces. However, there is a stronger counterexample.
But before constructing it, we make one more useful remark about the Kantorovich norm.

Remark 2. Let Y € X . Then M(Y) is isometrically embedded into Mo(X).
Indeed, by definition, we have

lullrx = sup{/X fdp: f € Lipl(X)}

Consider an arbitrary function f € Lip'(X). Since pu € My(Y), we have

/X fp = /Y fdu.

Using the fact that f| v € Lip*(Y) we get

HMHK,Y:sup{ / fdu:fGLipl(Y)} zsup{ / f\ydﬂrfGLipl(X)} 1)
Y Y
and
sup{ [ 1], dus £ € Lip' () | = .
Y

In fact, in expression (1), the equality holds. This is true, since by the Tietze theorem any
Lipschitz function on Y can be extended to a Lipschitz function on X .

Theorem 5. There is a compact space (X, p) with an infinite-dimensional space Mo(X) such
that every infinite-dimensional closed subspace Y C My(X) is not uniformly convex.

Proof For X we take the following subset of the real line:

{—;, n e N} U {0}.

Then any measure p € Mo(X) has the form

where k,, are constant coefficients such that the first moment is finite, i.e.,

oo

k;
E — < 00,
c— g
=1
and the measure is well-defined by the series

o0
Z k; < oo.
=1
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The Kantorovich norm is calculated using Remarks 1 and 2, because

(1 1
e =3 (5 = 251

n=1

n

> kil

i=1

Consider the mapping F': Mo(X) — I; defined as follows:

F(p) = (a1,a2...a,...),

o= (i) (S0

By definition, the mapping F' is an isometric embedding of the metric space My(X) into I; .
Thus, it suffices to show that there are no infinite-dimensional closed uniformly convex subspaces
in ll .

Let Y C I; be a uniformly convex closed subspace. Then, by the Milman—Pettis theorem, Y
is reflexive. This means that the closed unit ball By is weakly compact, and hence sequentially
weakly compact. Since weak convergence in ' implies convergence in norm, our ball By is
compact in the norm of I', and hence Y is finite-dimensional.

Now let us construct an example of a strictly convex infinite-dimensional subspace “by bear
hands”. For this purpose, we are going to prove an auxiliary lemma.

where

Lemma 2. There are two measures p,v € Mola,b] on the interval [a,b] whose linear span is
a strictly convex space with the Kantorovich norm.

Proof Without loss of generality, we can assume that we are solving the problem for the
interval [—3,3] (to obtain the general case, it is enough to shift and scale the interval). Consider
the measures p1 and ps given by their distribution functions as follows:

z+3 if z € [-3,-2]

[
Fi(x) = —x—1 ifxe[-20]
z—1 if z € [0, 2]
—rz+3 ifzxel23]
(0 if 2 € [-3,-2]
z+2 ifxel-2-1]
Fy(z) =4 —= if x € [-1,1]
z—2 ifzell,?
0 if 2 € [2,3]

We will prove that the span of these two measures is strictly convex. It suffices to check the
strict triangle inequality for two non-proportional linear combinations p; and po. In other
words, it follows from Remark 1 that for linear combinations kiju + kov and lLijp + lov it is
necessary to verify the following inequality:

/ |k1 By 4 ko Fo| 4+ | By + Lo Fy| — (k1 + 1) By + (k2 + o) Faldx > 0.
[_313}

This inequality holds if the following is true on a set of nonzero measure:
|k1F1 + kng’ + |l1F1 + ZQFQ‘ — ’(kl -+ ll)F1 + (kz + l2)F2|d.’E > 0. (2)

The last inequality turns into the equality only if the signs of the expressions ki F; + koF> and
[1F1 + loF5 coincide.
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Let us find the zeros of k1F; + koFs . We have

[for x € [-3,-2]: ki(z+3)=0 = r=-3;
k
for € [-2,—-1]: ki(—z—1)+ky(z+2)=0 <= z=-1-——2_;
ko — kq
k1
f e |—1,0]: ki(—x—1) —kox =0 <— =—
orx €] ] 1(—z —1) — kox .
k
for z € [0,1]: kEi(x —1) —kox =0 = = L.
ki — ko
ks
f € [1,2]: ki(x —1)+ ko(z—2)=0 = =1+ ;
w2 Rl D)4k e=te e
| for z € [2,3]: kEi(3—xz)=0 = =

It is clear from these expressions that for non-proportional pairs (ki,ks) and (l1,l2) there is
an interval on which the signs of ki Fy 4+ koFs and [1Fy + [sF5 are different. So, we obtain that
(2) is satisfied on this interval, which proves our claim.

Lemma 3. Let p, be a sequence of measures such that p, € Mo(R) and
tnl o) = 0
for some interval (a,b) .

If the sequence of measures p, converges to the measure p € My(R) in the Kantorovich norm,
then “'(a,b) =0.

P roof. The restrictions of the distribution functions of measures p, to the interval (a,b)
are equal to constants.The sequence of constants converges to a constant in the L; -norm. Thus,
the lemma follows from Remark 1.

Theorem 6. There exists a countable family of measures p, on the interval [0,1] such that
their closed linear span is a strictly convex space with the Kantorovich norm.

Proof. Consider the family of intervals

1 1 1 n 1

4k 104k 4k 104k |

Using Lemma 2, we construct measures oy and i such that supp(ay) C Ak, supp(Bx) C Ag

and the linear span of these measures is a strictly convex space with the Kantorovich norm.
We now construct the desired family of measures u,. To this end, we take a bijection s

between unordered pairs (n,l) of different indices of measures u, and even indices 2k of the
intervals Ao . Then we set

A = [ag, by =

n—1 )
Hn = Yn + Z s(ny) T Z 5s(n,i)a
i=1

i=n+1
where 7, is defined as
Yn = Oazp—1 — Oy _y-
Consider any measure g lying in the closed linear span of pu, . We prove that the measure
w1 has the form

p=>cipi, (3)
=1

where the series converges to p in the Kantorovich norm.
Since the measure g lies in the closed linear span of u,, for every & there is a linear
combination ciuq + ---+ cjpu; such that:
I = (crpn + -+ cjpy)ll <€
Lemma 3 implies the equality
M‘(bk—lzak) =0 (4)
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for each k.

Using (4), we successively apply Lemma 1 to restrict the measure p to the intervals [0, bo]
and [a,b1], then to the intervals [0,bs3] and [ag,b2], ..., [0,bk11] and [ag,bx] etc. Thus, we
have:

lall =D llmyl, (5)
j=1

where mj; is the restriction of p to [a;,b;].

Consider the interval Aggiq. On it, the restrictions of our measures form a one-dimensional
space, which enables us to determine the coefficient ¢ in representation (3).

Let us prove that for any v and p lying in the closed linear span of u, and v # cu the
inequality ||v|| + ||p|l > ||v+ || is true. Consider a pair of indices ¢ < j for which the measures
p; and p; enter the expansion (see (3)) of the measures v and g with non-proportional pairs
of coefficients (a,b) and (c,d), respectively. Then from (5) we have

]| = |lv — acg@ijy — bBsqij |l + llacg( iy + 0Bl
and
il = Nl — cagi gy — dBs )l + llcas gy + dBsgjl-
Using the strict convexity of the linear span of the measures ay(; ;) and By(; ;) we have

lacs(i iy + bBs(igll + lleasi gy + dBsq |l > (@ + e)agi i) + (b4 d) By -

So, applying the triangle inequality, we obtain what is required.

3. CONCLUSION

In this work, we study the existence of infinite-dimensional uniformly convex subspaces of
the space of measures with the Kantorovich norm on a compact set. We show that in case
of an interval there are such subspaces. However, an example of a compact set is given for
which there are no such subspaces. A restriction necessary for the existence of such subspaces is
also established: they must not contain measures with supports that are “far” from each other.
Furthermore, a constructive example is given of an infinite-dimensional space of measures that
is strictly convex.
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KanTropoBuu HoOpMaJibl 6ipKaabIIThI JOHEC oJlieMaep imki keHicrikrepi

AnHoTanusi: Makaiamga KOMIIAKTTBI METPUKAJBIK KeHICTIKTeri GOpesiIiK ejmeMaep KapacThIPbLIaJbl. Bapibik
OJIIIEMJIED > KUBIHBIHBIH, JKUBIHIIAJIAPbIHAA2 KaHTOPOBHY HOPMACBIHBIH OIpKAJIBIITHl JOHECTIN KapacThIPbLIA/bI.
KanTopoBrnd HOpMach! GipKaJbINTHI JOHEC OOJIATBIHAAN IIEKCI3 eJIeM/ Il eJIeMIAepAiH IKi KeHICTIirl Kypbluiabl. Bapibik
GIpKAJIBIITHL JOHEC eJIeMIep KeHicTirinig imki xenicrikrepi X -Ta akplpibl esmeMml Gosmarsiamail (X, p) akpIpebi3
KOMITAKTHIHBIH MbICAJIBI AJTBIH/IBI.

Tyitin cesaep: Kantoposuy HOpMAachl, GipKAJBIITH JOHEC KEHICTIK, OJIIIeMIep *KUbIHIIAChI, GOPEsIiK eJIIIeMIep.

N.A. Kyxapuyyk

Daxyarvmem mamemamuru u mexanury MI'Y umenu M.B. Jlomowocosa, Bopobwveswv, [opwi, 0. 1, 119991, Mocxksa,
Poccus

PaBHOMEPHO BBIIIyKJIble MOAIPOCTPAaHCTBA Mep ¢ HopMmoii KanroposBuua

Awnnoranus: B pa6ore paccmaTpuBaioTcs 60pesieBCKre Mephl Ha KOMIIAKTHOM METPHUYECKOM IIpocTpancrse. M3yuaercs
paBHOMEpPHAsI BBIILYKJIOCTh HOPMBI KaHTOpOBHYA Ha IMOAIPOCTPAHCTBAX BCErO IIPOCTPAHCTBAa Mep. llocTpoeH mnpumep
GECKOHEYHOMEPHOTO TOANPOCTPAHCTBA Mep Ha KOTOpOM HopMma KaHTopoBHYa paBHOMEPHO BBINYKJA. TakiKe MOJIydYeH
npuMep GeCKOHEYHOro KommakTa (X, p) Takoro, 4To BCE PABHOMEPHO BBIIYKJbIE MOJIIPOCTPAHCTBA IPOCTPAHCTBA MEp
Ha X KOHEYHOMEPHBI.
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KuroueBsre cioBa: Hopma Kanroposuda, paBHOMEPHO BBIILYKJIOE IIPOCTPAHCTBO, ITOAIIPOCTPAHCTBO MepP, HopeseBCcKue

MepBHI.
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