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Abstract: In this paper is proposed to use a model of high-precision propagation of the satel-
lite position, in which the disturbing accelerations are determined, and the obtained numerical
results are presented.

All disturbing forces acting on the satellite are modeled, the up-to-date data of the parameters
of the atmospheric drag model, as well as the parameters IERS, EOP are used. The developed
software for satellite orbit propagation is applicable to support the flight control of the satellite,
while ensuring the accuracy of the level of 10-15 meters along the position vector of the satellite
over a weekly time interval.

With a given model of satellite motion and known statistical characteristics of orbit determi-
nation errors, the covariance matrix is predicted along with the state vector, which has found
application in many applied tasks for support of Flight dynamics activities.
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1. Introduction. The main purpose of this work is to build a model for high-precision
propagation of the satellite position, taking into account the main disturbing accelerations acting
on a satellite in low-Earth orbit (LEO). For Satellite missions with a Payload in LEO, a high
accuracy of propagation the position in the satellite orbit is required to solve most of the tasks
of ballistic and navigation support of the orbit control flight to fulfill the target mission of the
satellite.

The state vector of the satellite can be represented as a six-dimensional vector consisting of
a position vector and a velocity vector of the satellite, or as a more extended vector, including
in addition the specified coefficient of reflectivity CR and atmospheric drag coefficient CD .

For a satellite mission in LEO, the maximum value of the norm of the discrepancy vector
between the propagated and the true (reference) vector of the satellite state over one week
interval characterizes the accuracy of propagation the position in the satellite orbit. Under the
high-precision propagation of the position in the orbit of the satellite, the value of 100 m is
assumed along the position vector and along the velocity vector of 0.02 m/s.

1This research is funded by the Aerospace Committee of the Ministry of Digital Development, Innovations
and Aerospace Industry of the Republic of Kazakhstan (№ BR109018/0221/PTF).
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Methods of propagation the position of the satellite are widely known, which uses semi-
analytical and analytical methods (for example, SGP4, Brower-Lydanne theory, PPT3), as well
as more accurate ones using numerical methods.

There are many products on the world market that solve similar problems in propagation
the orbit of a satellite. An overview of large products, which include a module for propagation
the position of the satellite in orbit using numerical integration of the equations of motion, is
presented in Table 1.

Table 1 – Software that includes a module for satellite orbit propagation

Organization Software Integration model or method
Analytical Graphics
Inc.

STK Runga Kutta,
Gauss-Jackson

NASA/JPL(1990) GIPSY/OASIS II
Real-Time GIPSY

High-order Adams
predictor-corrector

NASA/GSFC(1975) GTDS 4th-order Runga Kutta,
Cowell Adams predictor-corrector

NRL (1996) OCEANS Cowell 4th-order Runga Kutta,
9th order Predictor-corrector

TRACE Aerospace Corp.
(Air Force)

10th-order Gauss-Jackson w/
regularized time option

NASA and other GMAT1 Runge-Kutta ,Runge-Kutta89,
Runge-Kutta-Fehlberg56

Also among the large and developing products are the following:
FreeFlyer2 (ai-solutions), Goddard Trajectory Determination System (GTDS), Java Astrody-
namics Toolkit(JAT)3, focusSuite (GMV)4, Quartz(Airbus)5, ORSA6. However, most of them
represent commercial products with a high price, some with limited functionality, and an annual
paid license is required for support. At the same time, most of the products distributed for free,
built on simplified models, give errors of several hundred meters or more at an interval of 3 days
or more.

The OPT software developed by us for high-precision propagation of the satellite orbit can
be used for the mission of domestic remote sensing satellite for use in routine operation of the
satellite, while reducing the need to purchase expensive foreign software. The developed OPT
software has a number of functional features and advantages:

• Portability: The design and technology stack guarantees the portability of the product
to various operating systems and simplifies the deployment of the product;

• Modularity and extensibility: The software is designed as modular and extensible;
• Adaptability: applicable for satellite missions in low Earth orbit, as well as for other

types of orbits;
• High accuracy of propagation the position of the satellite in orbit;
• Multithreading;
• Rich graphical user interface.

Section 2 describes numerical integration methods and describes a dynamic model of
disturbing forces. The main method that reduces the error of calculations is the method of
numerical integration of differential equations describing the motion of the satellite. We consider
the Runge-Kutta method with the Dormand-Prince modification (DOPRI 8(7)) [1]. In section

1General Mission Analysis Tool, Software Package, NASA Goddard Space Flight Center, Greenbelt, MD,
2007, URL: http://gmat.gsfc.nasa.gov

2FreeFlyer, a.i. solutions Inc. FreeFlyer. URL: https://ai-solutions.com/freeflyer/.
3Java Astrodynamics Toolkit
4focusSuite (GMV), https://www.gmv.com/en/products/space/focussuite
5Quartz(Airbus Defence and Space flight dynamics software), www.airbus.com
6Orbit Reconstruction, Simulation and Analysis. Pasquale Tricarico. ORSA. http://orsa.sourceforge.net/
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3, a brief description of the software developed for high-precision propagation of the satellite
position is given, the modeling input data with which calculations were performed, and the re-
sults of calculations are given. Section 4 provides conclusions based on the results of calculations.

2. Mathematical formulation of the problem
2.1. Dynamic model
The propagation of the satellite state vector in orbit is based on a dynamic model of forces,

including the Earth’s gravity, polar and ocean tides, lunar-solar disturbances, atmospheric drag
and solar radiation pressure, as well as relativistic effects.

Some perturbed accelerations are represented using precise analytical (semi-analytical) for-
mulas or using numerical methods.

A dynamic model for propagation satellite motion is described by a system of the second-order
ODEs (Ordinary differential equations) that is solved numerically with the method of integrating
the Runge-Kutta with the Dormand-Prince modification. In this case, the components of the
velocity vector and the components of the acceleration vector of perturbing forces are contained
on the right-hand side of the system of equations.

It is assumed that the vectors ~r = (x, y, z) и ~v = (vx , vy, vz) determining the position and
velocity of the satellite, are set in an Earth Centered Inertial coordinate system (ECI J2000
frame). The equations of motion of the satellite have the form:

f (x, t) =

(
~̇r

~̇v

)
=


vx
vy
vz
ax
ay
az

 (1)

~a=− µ
r3
~r + ~a

Earth
+~aasp+~atide+~a3Bodies+~adrag+~aPNeff

+~aother, (2)

where ~a = d2~r
dt2

– acceleration equal to the sum of all accelerations [2, p. 525] due to the action
of disturbing forces on the satellite, and the terms from the right part describe disturbances
caused by the gravitational field of the Earth, solid and ocean tides, disturbances of the Sun
and Moon, solar radiation pressure, atmospheric drag effects, Post-Newtonian corrections. The
remaining shortcomings of the force models are compensated by empirical accelerations, which
are corrected together with other parameters on orbit determination process.

Earth Gravity Models. It is convenient to determine the potential of the Earth’s gravitational
field in a geocentric equatorial coordinate system rotating with the Earth. The potential of the
Earth’s gravitational field is expressed in the form of expansion by spherical harmonic functions
in a geocentric Earth-fixed reference frame [3]:

U(r, λ, ϕ) =
µ

r

(
1+

∞∑
n=2

n∑
m=0

(
R⊕
r

)n
(Cn,mcosmλ +Sn,msinmλ )Pn,m(sinϕ )

)
(3)

where µ – Gravitational Parameter of Earth; µ = G ·M = 398,6005·1012 м3/с2;
G –the universal gravitational constant of the Earth;
M – Earth mass;
r – the distance from the center of mass of the Earth to the point in space where the potential
is calculated;
R⊕ – the average radius of the Earth;
ϕ, λ – geocentric coordinates of the satellite (latitude, longitude of a spacecraft mass point);
Cn,m, Sn,m – the gravitational coefficients of sectorial harmonics at n = m and tesseral har-
monics at n 6= m ;
Pn,m(sinϕ ) – the associated Legendre functions of degree n and order m, which are calculated
by recurrence relations.
Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика, 2022, Том 141, №4
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Imagine U in the form: U = U0 + U1, where

U0 =
µ

r
,

U1 =

∞∑
n=2

n∑
m=0

unm

unm =
µ

r

(
R⊕
r

)n
(Cn,mcosmλ + Sn,msinmλ )Pn,m (sinϕ ) .

The components of acceleration due to a nonspherical central body are partial derivatives of the
geopotential U in geocentric Cartesian coordinates x, y, z :

(~aEarth)
′

x = −µ x
r3

+
∂U1

∂x
,

(~aEarth)
′

y = −µ y
r3

+
∂U1

∂y
,

(~aEarth)
′

z = −µ z
r3

+
∂U1

∂z
,

To describe the Earth’s gravitational field, we use the models
EarthGravityModel96(EGM96) and EarthGravityModel2008(EGM2008) [4]. The
software implements models of the earth’s gravitational field EGM96/EGM2008 in the form
of expansion in a series of spherical functions, providing accounting for the full number of
harmonics up to 71 degrees inclusive with the possibility of selective accounting of harmonics.
But it is possible to use the maximum degree and order of 2190x2190, but at the same time a
significant decrease in performance (long computing time) does not pay off with a significant
improvement in accuracy compared to non-simulated perturbations.

Rotations corresponding to Precession, Nutation and Pole movement of Earth’s rotation axis
are taken into account on coordinate transformations between Celestial to Terrestrial reference
frames.

Solid and ocean tides. The tides of the Earth (solid and oceanic) are given by the k20 , model
considered in [5].

Perturbations from tidal deformations of the central body make a noticeable contribution to
the composition of perturbing accelerations.

The gravitational influence of the Sun, Moon and large planets causes deformations of the
Earth, as a result of which its gravitational field changes. The simplest model for representing
the potential of the forces acting on the satellite due to tidal deformations of the Earth is the
Love model [6] or the model of solid tides. More accurate models take into account the influence
of tidal deformations occurring in the ocean and in the Earth’s atmosphere. Then the influence
of tides can be modeled through corrections to the coefficients of the Earth’s geopotential Snm ,
Cnm .

Solar radiation pressure. The disturbance due to a solar radiation is given by the formula [2, p.
574]:

~asrp= −ρSR
cRA}

m

~rsat−Sun
|~rsat−Sun|

(4)

where
• ρSR – is the initial solar radiation, depending on the season and the intensity of solar

activity;
• ρSR=P0

C , where P0 – is the power of solar radiation acting on 1 cm of the Earth’s
surface (1358–1373 W/m2 );

• the coefficient of reflectivity CR determines the reflective and absorbing characteristics
of the satellite body material;
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• A} – the cross-sectional area of the satellite perpendicular to the direction of solar radi-
ation (depends on the mode of operation of the satellite, constantly changes depending
on the configuration of the satellite);

• ~rsat−Sun - vector in the direction from the satellite to the Sun;
• m is the satellite’s mass.

Lunar-solar disturbances. In the inertial coordinate system associated with the Earth, the
acceleration of the satellite caused by the attraction of a body P of point mass M is expressed
as follows [7]:

~a3Bodies = ~̈r −GM

(
~b− ~r
|b− r|3

−
~b

|b|3

)
(5)

where r and b –are the geocentric coordinates of the satellite and the body P .
To calculate the positions and velocities of the Sun, Moon and major planets, we use high-

precision ephemerides DE440 and DE441 distributed by NASA’s JPL Laboratory. These
ephemerides are obtained by numerical methods and give coordinates in the form of Cheby-
shev polynomials in a rectangular barycentric coordinate system with the Earth’s equator and
equinox, referring to the epoch J2000 .

Atmospheric Drag. Among the forces of non-gravitational nature, aerodynamic forces acting
by the influence of the Earth’s atmosphere have the greatest impact on the movement of LEO
satellites (i.e. satellites moving at altitudes from 150 to 1500 km). The effect of these forces
is mainly expressed in the resistance to the movement of the satellite, directed opposite to its
relative velocity [2, p. 551]:

~adrag =
1

2
ρ
CDA

m
v2
rel

~vrel
|~vrel|

(6)

where ρ – the density of the atmosphere, which depends on the selected atmospheric drag
model, the composition of the atmosphere, the possibility of propagation, as well as on the solar
activity index F10.7 and the geomagnetic activity indices Kp, ap ;
CD – aerodynamic drag coefficient;
~vrel – relative velocity of the satellite to the rotating atmosphere;
A – area of the satellite.
For the air density function, the approximate expression is valid:

ρ=ρ (h) =ρ0e
−h/H ,

where h is the height at which the density is measured, H is a constant (height scale),
ρ0− is the density value at the starting point.
The ballistic coefficient BC = CDA/2m for the LEO case is usually estimated as part of the

extended state vector, since this is one of the main sources of errors.
Time on coordinate systems conversions. Service IERS (International Earth Rotation and

Reference Systems Service) is responsible for monitoring the Earth orientation parameters, for
maintaining global time and reference frame standards, including time corrections. The Earth
Orientation Parameters (EOP) are the parameters provide the rotational part of the transfor-
mation between the current releases of the International Terrestrial Reference Frame and the
(ITRF) International Celestial Reference Frame (ICRF) as a function of time. In our model, we
periodically update information about time corrections and about the Earth’s orientation pa-
rameters from the IERS bulletins 7: these are the parameters UT1-TAI, UTC-TAI, GPS-UTC,
UT1-UTC [sec]; the coordinates of the pole offset x ["], y["].

2.2 Numerical integration of the ODE describing the satellite’s motion.
The efficiency and accuracy of calculations are provided by high-precision numerical methods.

As an indicator of the effectiveness of numerical integration methods in propagation the position
of the satellite in orbit, it is considered to achieve a given level of accuracy when integrating with

7International Earth Rotation and Reference Systems Service(IERS Conventions),
https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
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10



A.G. Yessengaliyev, A.B. Mukanov

less calculation time, which is equivalent to the number of calls to the right side of the system
of ODE(Ordinary differential equations), containing accelerations from all considered disturbing
forces acting on the satellite.

To determine the parameters of the satellite motion at time t , it is necessary to solve
a system of differential equations (1) with the initial conditions set at time t0 : (~r0, ~v0)
=(x, y, z, vx, vy, vz)|t0 .

Several types of ODE’s numerical integration, describing the motion of the satellite, were
considered, including nested Runge-Kutta methods and their modifications. Among the modern
methods for solving non-rigid systems of ODE, the best results are obtained by the Dormand-
Prince method 8(7) with adaptive step with error control, which was chosen for integrating the
system of equations, describing the motion of the satellite(1).

Runge-Kutta methods [8] for solving the differential equation:

y′ = f(x, y(x)) (7)
with an initial condition

y (x0) = y0 (8)
are given by the following calculation formulas of approximate values of the solution yn+1 =
y(xn+1) in the xn+1 = xn + hn :

yn+1 = yn +

s∑
i=1

αiki (9)

where
k1 = hnf(xn, yn) (10)

ki = hnf

xn + cihn, yn +

i−1∑
j=1

aijkj

 , i = 2, 3, . . . , s, (11)

s – the number of stages of the Runge-Kutta method and

ci =
i−1∑
j=1

aij , i = 2, 3, . . . , s. (12)

In practice, nested Runge-Kutta formulas are often used, in which, together with formulas (9)-
(12), the error estimator formula is used:

ŷn+1 = yn +
s∑
i=1

α̂iki, (13)

where is the new approximate value of y(xn+1) calculated with a new set of weight multipliers
α̂i, i = 1, 2, . . . , s .

The approximation orders of the methods given by formulas (9) and (13), as a rule, differ. For
such Runge-Kutta methods, the notation RK p(q) is used, where p is the order of approximation
of formula (8). q is the order of approximation of formula (13). In [1], Dormand and Prince
proposed a modification of the Runge-Kutta method RK8(7) (now designated as DOPRI8(7)).
They considered a 13-stage Runge-Kutta method of orders 8(7). To reduce the number of
equations, the following additional conditions were proposed (reduced system).

13∑
i=1

α̂iaij = α̂j (1− cj) , j = 1, . . . , 13, (14)

12∑
i=1

αiaij = αj (1− cj) , j = 1, . . . , 12, (15)

ai2 = 0, i = 4, . . . , 13, ai3 = 0, i = 6, . . . , 13, (16)
α̂i = αi = 0, i = 2, . . . , 5, (17)
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12∑
j=1

aijc
k
j =

ck+1
i

k + 1
, k = 1, 2; ; i = k + 2, . . . , 13, k = 3; ; i = 6, . . . , 13 (18)

13∑
i=1

α̂i (1− ci) aij = 0, j = 4, 5, (19)

13∑
i=1

α̂ici (1− ci) aij = 0, j = 4, 5, (20)

13∑
i=1

12∑
j=1

α̂i (1− ci) aijajk = 0, k = 4, 5, (21)

13∑
i=1

(αi − α̂i) (1− ci) aij = 0, j = 4, 5, (22)

This model has 10 free unknowns: c2 , c3 , c6 , c7 , c8 , c10 , c11 , α̂13 , α12 , a84 . We
choose the values of these free unknowns different from each other and at least one of the
unknowns α̂13 , α12 different from zero. The remaining unknowns are found by solving the
system (14)-(22). Ratios (14)-(22) for coefficients αi, α̂i, i = 1, . . . , 13, cj , j = 2, . . . , 13 ,
aij , j = 1, . . . , i− 1, i = 2, . . . 13 were proposed in [1]. A set of coefficients satisfying the ratios
(14)-(22) were also selected there (see Table 2 in [8]).

The Dormand-Prince method 8(7) has the smallest error among all schemes of the 8th order.
Compared with the Fehlberg method, the Dormand-Prince method showed the best results in
terms of global error, as well as the total number of calls to the right side of the system with
disturbing accelerations acting on the satellite in orbit, as shown in the Table 2.

Table 2 – Global errors of numerical methods for one orbit revolution for the first group of initial
values

Метод погрешность
Fehlberg45 7.42775 · 10−12

DOPRI5 1.95463 · 10−13

Fehlberg78 5.45348 · 10−12

DOPRI8 1.06343 · 10−13

The global error is understood as the maximum value from the norms of the vectors of
differences between the exact solution and the numerical solution on the interval grid (the
interval is equal to the orbital period, in this case about 97 minutes) using the appropriate
integration method in the absence of rounding errors.

ε (τ) = max
1≤i≤n

|yi − zi|,

where | · | –is the selected norm in Rm , m is the dimension of the state vector of the satellite,
yi =

(
x1
i , x

2
i , , x

m
i

)
– approximate solution in node ti ; zi = zi (ti) – is the exact solution in

the same grid node.
By default, when the state vector consists only of the position vector and the velocity vector

of the satellite, then the dimension in the standard case is m = 6 .
As a rule, numerical integration errors are not a large source of errors compared to errors

in modeling the model of perturbing accelerations, which are the main sources of errors. It
is assumed that the integration method used is correctly configured with the correct step size
control.

2.3 Covariance propagation
In the probabilistic formulation, the position of the satellite in orbit is determined by the

results of the propagation of motion parameters and the propagation of the covariance matrix.
The probabilistic nature of the satellite’s location at the propagated point in orbit is taken into
Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика, 2022, Том 141, №4
Вестник ЕНУ им. Л.Н. Гумилева. Математика. Компьютерные науки. Механика, 2022, Том 141, №4

12



A.G. Yessengaliyev, A.B. Mukanov

account, based on the accuracy of determining the orbit parameters from GPS navigation data.
The accuracy of determining the orbit parameters is set by the covariance matrix at the time of
clarifying the initial conditions of the satellite motion.

At the same time, it is assumed that the scattering of the elements of the state vector of the
satellite obeys the normal distribution law.

The covariance matrix, in turn determines the scattering ellipsoid (a special case of the phase
space region) in which the satellite can be located with a given probability level.

Figure 1 – Error ellipsoid

In the probabilistic formulation, an ellipsoid of scattering is defined at any given time, covering
a region of space in which a satellite can be located with a given level of probability. Suppose
that the scattering cloud is approximated by an ellipsoid of rotation curved along the orbit of
the satellite, with axes equal to σρτn . The center of this ellipsoid is the position of the satellite
in orbit at the initial epoch.

It is assumed that the measurement errors of the six orbital elements have a normal distri-
bution. Thus, the satellite location error also represents a three-dimensional normal distribu-
tion [10], [11]. Covariance matrices should statistically correspond to the actual accuracy of the
estimate in accordance with three-dimensional normal (Gaussian) probability distributions.

According to [12], the probability of the distribution of points in an ellipsoid varies as follows:

P =
4√
2π

(
k3

6
− k5

20
+

k7

112
− k9

864
+ . . .

)
,

where k -magnification factor.
The probability of the distribution of points in the error ellipsoid changes with the change of

K as follows:
at k=1, the probability of distribution of expected data points is 19.9%;
at k=2, the probability of distribution of expected data points is 73.9%;
at k=3, the probability of distribution of expected data points is 97.1%.

The covariance matrix is provided in the form of a symmetric matrix of size 6 x 6 and
characterizes the uncertainty in the state vector of the satellite. The diagonal elements represent
the variance in each of the components (R, T,N, Ṙ, Ṫ , Ṅ) , and the non-diagonal terms give the
covariance between the two named components. The covariance matrix is represented in the
orbital coordinate system (R, T,N, VR, VT , VN ) :

Cov =



CRR CTR CNR
˙CRR ˙CTR ˙CNR

CRT CTT CNT
˙CRT ˙CTT ˙CNT

CRN CTN CNN
˙CRN ˙CTN ˙CNN

CRṘ CTṘ CNṘ CṘṘ CṪṘ CṄṘ

CRṄ CTṄ CNṄ CṘṄ CṪṄ CṄṄ

CRṪ CTṪ CNṪ CṘṪ CṪṪ CṄṪ


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This representation allows you to most clearly represent the errors in determining the param-
eters of the orbit.

A numerical experiment on the propagation of the covariance matrix shows that the diagonal
elements of this matrix corresponding to deviations along the radial and normal directions in
the orbital coordinate system have a harmonic character.

Let x(t) = (ri, rj , rk, vi, vj , vk) – be the state vector of the satellite. As is known, the state
vector can be described by a stochastic dynamical system

ẋ=f (x,w, t) , (23)

where w is the noise of the system. Let the measurements zk of the state vector xk=x(tk) at
time t=tk be expressed as follows:

zk=hk (tk, x0) + wk, (24)

where wk – is the noise of the system.

Here hk denotes the model value of the kth observation as a function of time tk and the
instantaneous state x(t0) at the initial moment of time. Errors arising from rounding errors,
small nonlinearities, simplifying the force model will propagate without further correction by
subsequent measurements and will lead to an erroneous and divergent estimation of the satellite
state vector. To avoid such a situation, the addition of technological noise (process noise) is
used.

The values of wk take into account the difference between actual and simulated observations
due to measurement errors, which are usually considered randomly distributed with a zero mean
value.

Let x̂k−1 be an estimate of the state vector at time tk−1 . Using x̂k−1 an a priori estimate
of x̂−k is obtained. After the measurements zk a correction of the a priori estimate is carried
out and a posteriori estimate of x̂+

k is obtained.
At the initial moment, the following are given: x̂k−1, P̂k−1 .
The a priori estimate x̂−k is obtained by integrating equation (23) with the initial condition

on the interval [tk−1, tk] x(tk−1) =x̂k−1 , i.e.

x̂−k =x̂k−1+

∫ tk

tk−1

f (x̂k−1, w, t) dt. (25)

Φ̇ = ∂f(x,w,t)
∂x Φ(tk, tk−1) with an initial condition Φ (tk−1, tk−1) = I.

Errors in modeling the true dynamics of the system at this step may introduce a priori some
error in the estimation, which is quantified in the error covariance matrix Pk .

An a priori estimate of the error covariance matrix is obtained from a linearized dynamical
system:

P−k =Φk−1(tk, tk−1)P+
k−1ΦT

k−1(tk, tk−1)+Q, (26)
where

Φk−1=eFk−1∆t, Fk−1=
∂f (x,w, t)

∂x

∣∣∣∣
x=x̂k−1

, (27)

Q=



σ2
x 0 0 0 0 0

0 σ2
y 0 0 0 0

0 0 σ2
z 0 0 0

0 0 0 σ2
dx 0 0

0 0 0 0 σ2
dy 0

0 0 0 0 0 σ2
dz

 (28)

where Q is the covariance matrix of the system noise.
The expected system noise (system dynamics modeling errors) and measurement noise (ir-

regular measurement fluctuations) are used to weigh the significance of two updates relative to
each other.
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Modeling the noise of the Q process is a difficult task, since it is necessary to take into account
various sources of disturbances. These sources are, for example, the geopotential of the Earth,
the atmospheric drag/density, the pressure of solar radiation, disturbances from third bodies
and tidal forces.

The accuracy of propagation the parameters of the satellite motion is determined by the
covariance matrix, which is calculated by the formula (26), with a known matrix at the previous
step P+

k−1 .
Φk−1− the matrix of partial derivatives of the elements of the vector of motion parameters

at time t by the elements of the vector of motion parameters for the initial epoch. The above
ratios (25)-(26) allow us to propagate the covariance matrix together with the parameters of the
satellite motion.

Also a method to reduce the influence of numerical errors in calculations for updating the co-
variance matrix has been applied on propagation process, which together with a highly accurate
propagation, can be applied in different satellite’s flight control tasks, where the satellite’s orbit
determination errors taking into account.
3 Results and Discussion
3.1 Developed software «Orbit Propagator tool»
The OPT (Orbit Propagator Tool) software developed by us is based on a high-precision

model for orbit propagation of LEO satellites. This software makes it possible, with a given
model of satellite motion and known statistical characteristics of orbit determination errors, to
propagate the covariance matrix together with the state vector.

The OPT is a software tool designed to support operators in Flight Dynamics routine opera-
tions and able to use it for high-precision orbital analysis to support various space missions and
planning in-orbit maneuvers. Software tool allows you to propagate the orbital parameters of
the satellite (state vector, Keplerian elements) at a given interval with the writing of the results
in the selected coordinate system in the report files. Also in the software there is a possibility
of constructing two-dimensional graphs of orbital elements for analyzing the evolution of the
elements of the satellite orbit.

The software contains a flexible system of configurable parameters of the acceleration model
and the integration method (Fig. 2), including the choice of sources of planetary ephemerides,
the choice of a set of configuration parameters. And it can be used as a standalone tool or in
combination with advanced satellite operations planning tools in orbit. A high level of design
flexibility is also achieved due to an extensive set of input and output parameters.
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Figure 2 – Configurable parameters of the dynamic model of perturbation forces

3.2 Simulation data
The results obtained by modeling the satellite motion under various scenarios with a different

set of disturbing forces, as well as the use of numerical methods for integrating high orders
with automatic step selection, demonstrate high accuracy in propagation the satellite position
in orbit. The propagation of the satellite state vector in orbit is based on a dynamic force model
that includes the Earth’s gravity, polar and ocean tides, lunar-solar disturbances, atmospheric
drag and solar radiation pressure, as well as relativistic effects.

On coordinate conversions effect the Parameters of the Earth’s rotation of the IAU(The
International Astronomical Union) and IERS services are taken into account , as well as the
geomagnetic index, atmospheric data from NOAA are taken into account on calculations of
acceleration due to atmosphere drag effect.

Several test cases were created for each orbit to test the ability of the OPT software to work
accurately using various combinations of forces. The forces used for testing on Earth included
models of the Earth’s gravitational field EGM2008 , perturbing accelerations from other planets,
modified Harris-Priester models of atmospheric drag and solar radiation pressure (SRP). The
degree and order of the geopotential of the Earth were set as constant from 0 ∗ 20 to 71 ∗ 71 .
The parameters in Table-4 show the composition and parameters of the disturbing forces used
for the test run of the software for demonstration purposes.

All calculations on the numerical integration of the equations of motion of the satellite are
carried out in the ECIJ2000 coordinate system (an inertial coordinate system with the origin
at the center of mass of the Earth for the epoch J2000 ). The duration of the propagation, the
size of the report output step and the size of the integrator step varied for different test cases.
The time steps of the integrator were chosen for the most accurate comparison of the results of
the test case. Units of measurement when comparing state vectors: m,m/sec .

For test case, the initial epoch was chosen as 2022/04/28 21:38:30 UTC. The initial conditions
used for the test orbits are presented in Tables 3.

When we propagated the orbit of the KazSTSAT satellite, the values of the variables of the
perturbing forces model from the following table were used.
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Table 3 – Initial State vector in Earth Mean Equator and Equinox of J2000 reference frame

state vector in EME J2000 Kepler elements
x 6652911.169537571 Semi-major axis (a) 6968.860759643917
y 871175.193766317 Eccentricity (e) 0.002351096390
z 1864622.407990260 Inclination (i) 97.621163623454
vx 2141.603813809 Longitude of the ascending node (Ω) 185.329246514044
vy -770.204970971 Argument of perigee (ω) 91.536956373807
vz -7217.886453230 Mean anomaly (M) 72.533302431270

Table 4 – Force Model Parameters

Parameter OPT
Area[mˆ2] 0.675
Satellite Mass[kg] 103.9
Integrator RK7(8)
Integrator error tolerance 1e-013
Integrator error control Yes
n (degree) 20
m (order) 20
Sun true
Sun position True: DE405
Moon True: DE405
SRad(solar radiation pressure) True
SRP: sun position True: DE405
Shadow modeling Cylindrical
Drag true
Atmospheric density model Harris-Priester
Cr(Radiation pressure coefficient) 1.06
Average F10.7 141.5
Atmospheric Drag: Geomagnetic Flux Update Constant
Geomagnetic index(Kp): JR and MSISE only 3
CD (Drag coefficient) 2.2
ERS EOP format used Bulletin B(IERS)
Polar Motion calculation enabled
Solid tides enabled
Ocean tides enabled
Relativistic Accelerations enabled

Table 5 – Parameters and variables of the model of disturbing accelerations

gravity model order 70
mass [kg] 102.89
area [mˆ2] 0.675
Cr 1.06
Cd 2.2
averageF10_7 141.5
integration step size [s] 10.0
relative error 1E-13
absolute error 1E-09
Sigma 100.0

We took the parameters of the Earth’s rotation and time corrections according to the following
table.
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Table 6 – Earth rotation parameters and time corrections

UT1_UTC -0.24081
UTC_TAI -37.0
xpole 0.1627
ypole 0.4322

The results of the OPT propagation are compared with the results obtained in the
GMAT(General Mission Analysis Tool) in order to show the equality of the results.

General Mission Analysis Tool (GMAT) is an open source software system for space mission
analysis and for solving the navigation tasks developed by NASA in collaboration with Research
Institutes.

The GMAT’s propagator has been verified and validated [13] against comparison with prop-
agators, that are include as part in Free Flyer and STK. These toolkits are presented as one of
the most precise and reliable orbit Simulation tools.

Table 7 – Test scenario: Propagation of the state vector for KazSTSAT satellite on LEO, duration
= 1 day. Composition of forces: Earth-EGM96-Sun-Moon- HPAtmModel -SRP- cylindrical

OPT GMAT Differences
x 5152688.373 5152688.531346 0.158346
y 1178317.233 1178317.226069 -0.006931
z 4524117.020 4524116.838835 -0.181165
vx 5032.404 5032.403807 -0.000193
vy -205.331 -205.331045 -0.000045
vz -5653.509 -5653.509171 -0.000171

With such a combination of forces, the accuracy of propagation the position of the satellite
was 0.240712 meters, according to the velocity vector 0.00026 m/s.

Table 8 – Comparison results after 7 days from the initial epoch. Composition of forces:
Earth-EGM96-Sun-Moon-HPAtmModel-SRP- cylindrical State vector in J2000. Epoch 2022/05/05
21:38:30.000 UTC

OPT GMAT Differences
x -6594221.923000 -6594224.764733 -2.841733
y -1628674.335000 -1628673.392481 0.942519
z -1546954.019000 -1546942.627187 11.391813
vx -1849.999000 -1849.986891 0.012109
vy 600.779000 600.781991 0.002991
vz 7311.571000 7311.573858 0.002858

With such a combination of forces, the accuracy of propagation the position of the satellite
was 11.7 meters, with a velocity vector of 0.013 m/s.

It is assumed that the standard deviation of the initial state of the satellite state vector is 100
m (a priori sigma position) and 1 m/s (a priori sigma velocity), respectively. These statistics
are used to generate the initial a priori covariance matrix.

When using various combinations of models, we noticed that among the orbital models used
for satellite in low-Earth orbit, the geopotential and the atmospheric drag model are the main
sources of errors, and therefore they need to be modeled more accurately.
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Figure 3 – Composition and form of the output files of the report with ephemerides

Plot of selected orbital elements in the long-term analysis of the evolution of orbital elements
using "medium elements" for a mission in LEO orbit, for example, at an interval of 6 months,
are shown in Fig. 6-9.

The computational performance of numerical propagator calculations with a different combi-
nation of forces, step and interval is presented in Table-9.

Table 9 – Calculation time for propagation the state vector of the satellite in the OPT software

Test case OPT

time[sec]

LEO SSO 1 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 2.4

LEO SSO 1 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 2.0

LEO SSO 3 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 6.5

LEO SSO 3 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 6.0

LEO SSO 3 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 5.9

LEO SSO 7 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP –cylindrical 15.9

LEO SSO 7 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP –cylindrical 14.6

LEO SSO 7 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 15.1

LEO SSO 7 day with step=300 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 13.8

LEO SSO 30 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 70.2

LEO SSO 30 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel-SRP -cylindrical 60.3

LEO SSO 30 day with step=300 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel-SRP -cylindrical 61.6

LEO SSO 365.25 days with step=600 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 799

Calculations were performed on a portable computer with an Intel Core i7-4710HQ processor
with 8 GB RAM.

The presentation of all the results obtained in the software is beyond the scope of one article,
so we limited ourselves to demonstrating the operation of the test scenario and the propagation
process in the OPT software.
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Figure 4 – Evolution of the Semi-major axis in the 30-day interval

Figure 5 – Evolution of the Semi-major axis over the 6-month interval

Figure 6 – Evolution of the inclination over the 6-month interval

3.2 Verification
This section describes the validation processes and results for the OPT tool. For a realistic as-

sessment of accuracy, the user must make sure that the models of disturbing forces, respectively,
and the propagation results can be trusted with an accuracy above 15 meters.
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Figure 7 – Evolution of the eccentricity over the 6-month interval

Figure 8 – Keplerian elements of the orbit in EME J2000

Figure 9 – Keplerian elements of the spacecraft orbit in the EME ToD (true-of-date epoch)
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Figure 10 – The state vector in the EME J2000

The results of the OPT propagation are compared with the results obtained in GMAT8, as
well as with the GPS receiver navigation solution. For example, the residuals resulting on state
vectors propagation for 7 days from the same epoch time by both the GMAT and developed
OPT tool, are shown in figures 11-12.

Figure 11 – The difference in the position vector over a one-week interval (m)

The OPT propagation results are compared with the GMAT results with the maximum nor-
malized position and velocity difference over the propagation duration. This results displayed
in a table format. To determine whether the comparison value of the test case modeled in the
software is acceptable, an acceptance matrix was created, presented in Table 10. Comparative
results of propagation the satellite orbit on one orbit are shown in tables 11-15, obtained in
different coordinate systems.

Also, for verification purposes, we compared the orbit propagation at various time intervals
with the navigation solutions of the SGR-07 GPS receiver installed on board the KazSTSAT
satellite.

8General Mission Analysis Tool, Software Package, NASA Goddard Space Flight Center, Greenbelt, MD,
2007, URL: http://gmat.gsfc.nasa.gov
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Figure 12 – The difference in the velocity vector over a one-week interval (m/s)

Table 10 – Acceptance Matrix

Difference in Acceptable position difference (m)
Non-spherical gravity <0.001
Point mass gravity <0.001
Solar radiation Pressure <0.6
Atmospheric Drag <20

Table 11 – The test scenario for comparing of the OPT/GMAT software results (Sun-synchronous
orbit)

Test case Position difference(m) Velocity difference(m/s)
Earth-JGM3-0-0-0-0 1.203 0.002
Earth-JGM3-Sun-0-0-0 1.203 0.001
Earth-JGM3-Sun-Moon-0-0 1.203 0.002
Earth-JGM3-Sun-Moon-0-SRP-cylindrical 1.020 0.001
Earth-JGM3-Sun-Moon-HPAtmModel-0 1.281 0.0015
Earth-JGM3-Sun-Moon-HPAtmModel-SRP 1.2 0.001
Earth-JGM3-Sun-Moon-HPAtmModel-SRP-cylindrical 1.0402 0.0009

Table 12 – The test scenario for comparing of the OPT/GMAT software results (Sun-synchronous
orbit)

Test case State vector State vector delta
(OPT) (m, m/s) (GMAT) (m, m/s)

Earth-JGM3-Sun- -1344.43852 -1344.438283 -0.23726362
Moon-HPAtmModel-SRP- 4977.977623 4977.979675 -2.052247331
cylindrical -4697.661829 -4697.659723 -2.10593889

0.0492403 0.049241026 0.0007259
5.181641 5.181639 -0.0020000

5.4932774 5.493279382 0.001981803
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Table 13 – The test scenario: KazSTSAT, 2019/01/17 12:00:00.0 UTC (EME J2000)

X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)

OPT 241433.619705 6487906.368239 2536797.612833 1009.703000 2747.069500 6970.948231

GMAT 241433.619705 6487906.368239 2536797.612833 1009.703000 2747.069500 6970.948231

delta 0 0 0 0 0 0

Table 14 – The state vector in the EME True-of-Date coordinate system

X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)

OPT -209600.1997021 -6488907.1731688 -2537067.7599385 -1008.5101100 2742.6862989 -6972.8465815

GMAT -209600.199642 -6488907.1731640 -2537067.759955 -1008.5101100 2742.6862990 -6972.8465820

delta 5.92E-05 4.8E-06 -1.7E-05 0 1E-07 -5E-07

Table 15 – Keplerian elements of the orbit in EME J2000

X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)

OPT 6967400.359 0.002037 97.868045 90.96413 99.216281 102.110747

GMAT 6967400.359 0.002037 97.868045 90.96413 99.216281 102.110747

delta -3.99537E-07 0 0 0 0 0

SGR-07 receives and decodes L-band signals from four or more GPS satellites and, using
range determination methods, is able to calculate the location of the satellite with an accuracy
of 15-25 meters, as well as determine the exact speed and time.

The SGR-07 receiver tracks C/A code signals at the L1 frequency from GPS satellites. Each
channel performs measurements of pseudorange, Doppler frequency shift and carrier phase in
the measurement epoch. These “raw” measurements are used to calculate the receiver position,
velocity and time (Position/Velocity/Time). The position and velocity are transmitted as arrays
of vectors in the WGS-84 coordinate system with reference to UTC time. The time is represented
as an exact location timestamp sent in GPS time format: the number of the week, the number
of seconds from the beginning of the current week and a fraction of a second.

Many tests were performed with a full set of considered disturbing accelerations. In OPT
software, when propagation movement, one of the processed vectors from a set of navigation
solutions that has been preprocessed was selected as initial conditions. During preprocessing,
abnormal errors were discarded according to the 3 ·σ rule. Intervals were selected for propagation
the position of the satellite representing the passive sections of the satellite flight: 1 day, 3 days,
7 days, 14 days and 30 days. Then the propagated state vectors of the satellite at the end of
the interval in the EME J000 coordinate system were compared with the vector obtained by the
GPS navigation solution at the end of the considered intervals.

Table 16 – The state vector refined by GPS data and the corresponding orbital elements(true-of-date)

epoch 2022/04/28 21:38:38.000 UTC
Keplerian elements (ToD) value State vector(ToD) value
Semi-major axis (a) 6960.925018138310 rx 6623658.751
Eccentricity (e) 0.002047257271 ry 903162.936
Inclination (i) 97.635627176777◦ rz 1950898.625
Longitude of the ascending node (Ω) 185.592351005803◦ vx 2238.240858
Argument of perigee (ω) 85.199606512757◦ vy -751.488029
Mean anomaly (M) 78.777122748204◦ vz -7190.619141

Given the accuracy of determining the GPS receiver, it can be argued that the accuracy of
orbit propagation allows using this model and the integration method to solve most problems
of satellite orbit control.
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Table 17 – Comparison of the satellite orbit propagation at the end of the one-week interval with
the orbit from the GPS receiver navigation solution

epoch 2022/05/05 21:38:38.000 UTC
Keplerian elements (ToD) OPT GPS difference
Semi-major axis (a) 6969.242572 6969.242560 -1.2986E-05
Eccentricity (e) 0.001758 0.001759 -1.72E-07
Inclination (i) 97.628551◦ 97.628552 -2.13E-07
Longitude of the ascending node (Ω) 192.397495◦ 192.397494 -1.634E-06
Argument of perigee (ω) 63.393216◦ 63.393216 -1.94E-07
Mean anomaly (M) 283.824257◦ 283.824255 -2.405E-06

4 Conclusion
In this research integration methods and a model of disturbing accelerations acting on the

satellite were studied. The efficiency of using the modified Dormand-Prince method 8(7) with
adaptive step with error control for the numerical solution of differential equations describing
the motion of the spacecraft to achieve a high accuracy during orbit propagation is shown.

The main purpose of this work was to show that the used propagation model and the inte-
gration method provide sufficient accuracy and are suitable for propagation the position of the
satellite, both on short-term and long-term time intervals. The use of an accurate model of
disturbing accelerations, using numerical methods of integration of high orders with automatic
step selection, demonstrated high accuracy of refinement of the state vector of the satellite in
orbit. It also provides a better estimate of the speed and, consequently, a better accuracy of the
propagation, thereby improving the accuracy in secondary tasks of satellite orbit control and
the accuracy of planning operations with the satellite payload.

The high-precision orbit propagation together with the updating the covariance matrix, can
be applied in many actual tasks on Flight Control Operational Planning and the safety in orbit,
where the orbit determination errors taking into account.

Such an approach, for example, has found its application for the task of Conjunction Assess-
ment analysis for closest approach cases between two space objects, where the collision avoidance
maneuver decision making process is based on a probabilistic approach.

The developed OPT software can be used as the basis for a number of applied tasks for
ballistic support the flight control of the satellite’s missions on LEO.
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Ковариациялық матрица болжамымен жоғары дәлдiктегi қозғалыс болжамы

Аннотация. Бұл мақалада Ғарыш Аппараттардың(ҒА) позициясын жоғары дәлдiкпен болжау моделiн
қолдану ұсынылады, онда бұзылған үдеулер анықталады, сонымен қатар алынған сандық нәтижелер ұсынылады.
Ғарыш Аппараттарына әсер ететiн барлық бұзушы күштер модельденедi, атмосфералық қарсылық моделiнiң
параметрлерiнiң, сондай-ақ IERS, EOP параметрлерiнiң өзектi деректерi қолданылады. LEO-дағы орбиталық
позицияны болжауға арналған әзiрленген бағдарламалық қамтамасыз ету ҒА ұшуын басқаруды қолдау үшiн
қолданылады, бұл ретте апталық уақыт аралығындағы ҒА позиция векторы бойынша 10-15 метр деңгейдiң
дәлдiгi қамтамасыз етiледi. ҒА қозғалысының берiлген моделiнде және күй векторымен бiрге орбитаны анықтау
қателiктерiнiң белгiлi статистикалық сипаттамаларында ковариациялық матрица болжанады, бұл белсендi ҒА
орбитасын басқарудың көптеген өзектi мәселелерiнде қолданылады.

Түйiн сөздер: ғарыш кемесi; ҒА позициясын болжау; орбитаны анықтау; төмен орбиталық орбита; орбитаны
бағалау; бұзушы күштер; сандық интеграция; Рунге-Кутта әдiстерi, ковариациялық матрица.
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Высокоточный прогноз движения КА с прогнозом ковариационной матрицы

Аннотация. В данной статье предлагается использовать модель высокоточного прогнозировании положения
КА, в которой возмущающие ускорения определены, а также представлены полученные численные результаты.

Все возмущающие силы, действующие на Космический аппарат(КА) моделируются, используются актуальные
данные параметров модели атмосферного сопротивления, и также параметров IERS, EOP. Разработанное
Программное обеспечение (ПО) для прогнозирования положения КА по орбите на LEO применимо для поддержки
управления полетом КА, при этом обеспечивается точность уровня в 10-15 метров по вектору положения КА на
недельном интервале времени.

При заданной модели движения КА и известных статистических характеристиках погрешностей определения
орбиты вместе с вектором состояния прогнозируется и ковариационная матрица, что нашло применение во многих
актуальных задачах по поддержке Динамики полета КА.

Ключевые слова: Космический Аппарат, прогнозирование положения КА, определение орбиты,

низкоорбитальная орбита, оценка орбиты, возмущающие силы, численное интегрирование, методы Рунге-Кутта,

ковариационная матрица.
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