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Abstract: In this paper is proposed to use a model of high-precision propagation of the satel-
lite position, in which the disturbing accelerations are determined, and the obtained numerical
results are presented.

All disturbing forces acting on the satellite are modeled, the up-to-date data of the parameters
of the atmospheric drag model, as well as the parameters IERS, EOP are used. The developed
software for satellite orbit propagation is applicable to support the flight control of the satellite,
while ensuring the accuracy of the level of 10-15 meters along the position vector of the satellite
over a weekly time interval.

With a given model of satellite motion and known statistical characteristics of orbit determi-
nation errors, the covariance matrix is predicted along with the state vector, which has found
application in many applied tasks for support of Flight dynamics activities.
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1. Introduction. The main purpose of this work is to build a model for high-precision
propagation of the satellite position, taking into account the main disturbing accelerations acting
on a satellite in low-Earth orbit (LEO). For Satellite missions with a Payload in LEO, a high
accuracy of propagation the position in the satellite orbit is required to solve most of the tasks
of ballistic and navigation support of the orbit control flight to fulfill the target mission of the
satellite.

The state vector of the satellite can be represented as a six-dimensional vector consisting of
a position vector and a velocity vector of the satellite, or as a more extended vector, including
in addition the specified coefficient of reflectivity Cr and atmospheric drag coefficient Cp .

For a satellite mission in LEO, the maximum value of the norm of the discrepancy vector
between the propagated and the true (reference) vector of the satellite state over one week
interval characterizes the accuracy of propagation the position in the satellite orbit. Under the
high-precision propagation of the position in the orbit of the satellite, the value of 100 m is
assumed along the position vector and along the velocity vector of 0.02 m/s.

IThis research is funded by the Aerospace Committee of the Ministry of Digital Development, Innovations
and Aerospace Industry of the Republic of Kazakhstan (Ne BR109018/0221/PTF).
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Methods of propagation the position of the satellite are widely known, which uses semi-
analytical and analytical methods (for example, SGP4, Brower-Lydanne theory, PPT3), as well
as more accurate ones using numerical methods.

There are many products on the world market that solve similar problems in propagation
the orbit of a satellite. An overview of large products, which include a module for propagation
the position of the satellite in orbit using numerical integration of the equations of motion, is
presented in Table 1.

TABLE 1 — Software that includes a module for satellite orbit propagation

Organization Software Integration model or method
Analytical ~ Graphics | STK Runga Kutta,
Inc. Gauss-Jackson
NASA/JPL(1990) GIPSY/OASIS II High-order Adams
Real-Time GIPSY predictor-corrector
NASA/GSFC(1975) GTDS 4th-order Runga Kutta,
Cowell Adams predictor-corrector
NRL (1996) OCEANS Cowell 4th-order Runga Kutta,
9th order Predictor-corrector
TRACE Aerospace Corp. 10th-order Gauss-Jackson w/
(Air Force) regularized time option
NASA and other GMAT! Runge-Kutta ,Runge-Kuttag89,
Runge-Kutta-Fehlbergb6

Also among the large and developing products are the following:

FreeFlyer? (ai-solutions), Goddard Trajectory Determination System (GTDS), Java Astrody-
namics Toolkit(JAT)?, focusSuite (GMV)*, Quartz(Airbus)®, ORSA®. However, most of them
represent commercial products with a high price, some with limited functionality, and an annual
paid license is required for support. At the same time, most of the products distributed for free,
built on simplified models, give errors of several hundred meters or more at an interval of 3 days
or more.

The OPT software developed by us for high-precision propagation of the satellite orbit can
be used for the mission of domestic remote sensing satellite for use in routine operation of the
satellite, while reducing the need to purchase expensive foreign software. The developed OPT
software has a number of functional features and advantages:

e Portability: The design and technology stack guarantees the portability of the product
to various operating systems and simplifies the deployment of the product;

e Modularity and extensibility: The software is designed as modular and extensible;

e Adaptability: applicable for satellite missions in low Earth orbit, as well as for other
types of orbits;

e High accuracy of propagation the position of the satellite in orbit;

e Multithreading;

e Rich graphical user interface.

Section 2 describes numerical integration methods and describes a dynamic model of
disturbing forces. The main method that reduces the error of calculations is the method of
numerical integration of differential equations describing the motion of the satellite. We consider
the Runge-Kutta method with the Dormand-Prince modification (DOPRI 8(7)) [1]. In section

LGeneral Mission Analysis Tool, Software Package, NASA Goddard Space Flight Center, Greenbelt, MD,
2007, URL: http://gmat.gsfc.nasa.gov

2FrecFlyer, a.i. solutions Inc. FreeFlyer. URL: https://ai-solutions.com /freeflyer/.

3Java Astrodynamics Toolkit

4focusSuite (GMV), https://www.gmv.com /en/products/space /focussuite

5QuartZ(Airbus Defence and Space flight dynamics software), www.airbus.com

60rbit Reconstruction, Simulation and Analysis. Pasquale Tricarico. ORSA. http: / /orsa.sourceforge.net/
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3, a brief description of the software developed for high-precision propagation of the satellite
position is given, the modeling input data with which calculations were performed, and the re-
sults of calculations are given. Section 4 provides conclusions based on the results of calculations.

2. Mathematical formulation of the problem

2.1. Dynamic model

The propagation of the satellite state vector in orbit is based on a dynamic model of forces,
including the Earth’s gravity, polar and ocean tides, lunar-solar disturbances, atmospheric drag
and solar radiation pressure, as well as relativistic effects.

Some perturbed accelerations are represented using precise analytical (semi-analytical) for-
mulas or using numerical methods.

A dynamic model for propagation satellite motion is described by a system of the second-order
ODEs (Ordinary differential equations) that is solved numerically with the method of integrating
the Runge-Kutta with the Dormand-Prince modification. In this case, the components of the
velocity vector and the components of the acceleration vector of perturbing forces are contained
on the right-hand side of the system of equations.

It is assumed that the vectors 7= (z,y,2) u U= (vy, vy,v;) determining the position and
velocity of the satellite, are set in an Earth Centered Inertial coordinate system (ECI J2000
frame). The equations of motion of the satellite have the form:
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where @ = % — acceleration equal to the sum of all accelerations |2, p. 525] due to the action
of disturbing forces on the satellite, and the terms from the right part describe disturbances
caused by the gravitational field of the Earth, solid and ocean tides, disturbances of the Sun
and Moon, solar radiation pressure, atmospheric drag effects, Post-Newtonian corrections. The
remaining shortcomings of the force models are compensated by empirical accelerations, which
are corrected together with other parameters on orbit determination process.

Earth Gravity Models. 1t is convenient to determine the potential of the Earth’s gravitational
field in a geocentric equatorial coordinate system rotating with the Earth. The potential of the
Earth’s gravitational field is expressed in the form of expansion by spherical harmonic functions
in a geocentric Earth-fixed reference frame |[3]:

o, ¢] n n

U(r,\, @) = B <1+ Z Z (REB> (Crmcos mA +Sp msinmA ) Py, (sin ¢ )) (3)
" n=2m=0 "

where p — Gravitational Parameter of Earth; u = G- M = 398,6005-1012 m3/c2;

G —the universal gravitational constant of the Earth;

M — Earth mass;

r — the distance from the center of mass of the Earth to the point in space where the potential

is calculated;

Rgy — the average radius of the Earth;

©, A — geocentric coordinates of the satellite (latitude, longitude of a spacecraft mass point);

Chnm,Sn,m — the gravitational coefficients of sectorial harmonics at n = m and tesseral har-

monics at n # m;

P, m(sing ) — the associated Legendre functions of degree n and order m, which are calculated

by recurrence relations.

JI.LH. 'ymunes arsiagarsl EYY Xabapmeicsl. MaTtemaruka. Komnbiorepiik reiabiMaap. Mexanuka, 2022, Tom 141, Ned

Becrnuk EHY um. JI.H. I'ymunesa. Maremaruka. Komnbiorepubsle Hayku. Mexanuka, 2022, Tom 141, Ned

8



A.G. Yessengaliyev, A.B. Mukanov

Imagine U in the form: U = Uy + Uy, where
Up =L

r

Ulzzzunm

n=2m=0

9

R n
Upm = g (fB) (CpmcosmA + Spmsinm\ ) Py, (sing ).

The components of acceleration due to a nonspherical central body are partial derivatives of the
geopotential U in geocentric Cartesian coordinates z,y, z:

(@Bartn) . = —pi— ol
Earth) o — MT?’ ox )
o) =t 4 90
(CLEarth) y ,u’rg + ay y
N r z 8U1
(aEarth) 2 — _MT’3 + B )
To describe the Earth’s gravitational field, we use the models
EarthGravityModel96(EGM96) and  EarthGravityModel2008( EGM2008)  [4]. The

software implements models of the earth’s gravitational field EGM96/EGM2008 in the form
of expansion in a series of spherical functions, providing accounting for the full number of
harmonics up to 71 degrees inclusive with the possibility of selective accounting of harmonics.
But it is possible to use the maximum degree and order of 2190x2190, but at the same time a
significant decrease in performance (long computing time) does not pay off with a significant
improvement in accuracy compared to non-simulated perturbations.

Rotations corresponding to Precession, Nutation and Pole movement of Earth’s rotation axis
are taken into account on coordinate transformations between Celestial to Terrestrial reference
frames.

Solid and ocean tides. The tides of the Earth (solid and oceanic) are given by the koo, model
considered in [5].

Perturbations from tidal deformations of the central body make a noticeable contribution to
the composition of perturbing accelerations.

The gravitational influence of the Sun, Moon and large planets causes deformations of the
Earth, as a result of which its gravitational field changes. The simplest model for representing
the potential of the forces acting on the satellite due to tidal deformations of the Earth is the
Love model [6] or the model of solid tides. More accurate models take into account the influence
of tidal deformations occurring in the ocean and in the Earth’s atmosphere. Then the influence
of tides can be modeled through corrections to the coefficients of the Earth’s geopotential Sy, ,

Cnm -

Solar radiation pressure. The disturbance due to a solar radiation is given by the formula |2, p.
574]:
CRA© Fsat—Sun (4)
m |Fsat—5'un|

asrp: —PSR

where
e pgr — is the initial solar radiation, depending on the season and the intensity of solar
activity;
° pSR:%, where Py — is the power of solar radiation acting on 1 cm of the Earth’s
surface (1358-1373 W/ m?);
e the coefficient of reflectivity Cr determines the reflective and absorbing characteristics
of the satellite body material;
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e As —the cross-sectional area of the satellite perpendicular to the direction of solar radi-
ation (depends on the mode of operation of the satellite, constantly changes depending
on the configuration of the satellite);

® sui_Sun - vector in the direction from the satellite to the Sun;

e m is the satellite’s mass.

Lunar-solar disturbances. In the inertial coordinate system associated with the Earth, the
acceleration of the satellite caused by the attraction of a body P of point mass M is expressed

as follows [7]:
3} o b—7 b
d3Bodies =T — GM (’b—?”|3 - |b|3> (5)

where r and b —are the geocentric coordinates of the satellite and the body P.

To calculate the positions and velocities of the Sun, Moon and major planets, we use high-
precision ephemerides DFE440 and DFE441 distributed by NASA’s JPL Laboratory. These
ephemerides are obtained by numerical methods and give coordinates in the form of Cheby-
shev polynomials in a rectangular barycentric coordinate system with the Earth’s equator and
equinox, referring to the epoch J2000 .

Atmospheric Drag. Among the forces of non-gravitational nature, aerodynamic forces acting
by the influence of the Earth’s atmosphere have the greatest impact on the movement of LEO
satellites (i.e. satellites moving at altitudes from 150 to 1500 km). The effect of these forces
is mainly expressed in the resistance to the movement of the satellite, directed opposite to its
relative velocity [2, p. 551]:

1 C’D14 2 777“6[

C_idr‘ag = 5[) m Urel 77’!‘6[‘ (6>

where p — the density of the atmosphere, which depends on the selected atmospheric drag
model, the composition of the atmosphere, the possibility of propagation, as well as on the solar
activity index Fjg7 and the geomagnetic activity indices K, ap;

Cp — aerodynamic drag coefficient;

Ure; — relative velocity of the satellite to the rotating atmosphere;

A — area of the satellite.

For the air density function, the approximate expression is valid:

p=p (h) =poe "™,

where h is the height at which the density is measured, H is a constant (height scale),
po— is the density value at the starting point.

The ballistic coefficient BC' = CpA/2m for the LEO case is usually estimated as part of the
extended state vector, since this is one of the main sources of errors.

Time on coordinate systems conversions. Service IERS (International Earth Rotation and
Reference Systems Service) is responsible for monitoring the Earth orientation parameters, for
maintaining global time and reference frame standards, including time corrections. The Earth
Orientation Parameters (EOP) are the parameters provide the rotational part of the transfor-
mation between the current releases of the International Terrestrial Reference Frame and the
(ITRF) International Celestial Reference Frame (ICRF) as a function of time. In our model, we
periodically update information about time corrections and about the Earth’s orientation pa-
rameters from the IERS bulletins ”: these are the parameters UT1-TAI, UTC-TAI, GPS-UTC,
UT1-UTC [sec]; the coordinates of the pole offset x ["], y["].

2.2 Numerical integration of the ODE describing the satellite’s motion.

The efficiency and accuracy of calculations are provided by high-precision numerical methods.
As an indicator of the effectiveness of numerical integration methods in propagation the position
of the satellite in orbit, it is considered to achieve a given level of accuracy when integrating with

"International Earth Rotation and Reference Systems Service(IERS Conventions),
https://www.iers.org/IERS/EN /Publications/Bulletins /bulletins.html

JI.LH. 'ymunes arsiagarsl EYY Xabapmeicsl. MaTtemaruka. Komnbiorepiik reiabiMaap. Mexanuka, 2022, Tom 141, Ned

Becrnuk EHY um. JI.H. I'ymunesa. Maremaruka. Komnbiorepubsie Hayku. Mexanuka, 2022, Tom 141, Ned

10



A.G. Yessengaliyev, A.B. Mukanov

less calculation time, which is equivalent to the number of calls to the right side of the system
of ODE(Ordinary differential equations), containing accelerations from all considered disturbing
forces acting on the satellite.

To determine the parameters of the satellite motion at time ¢, it is necessary to solve
a system of differential equations (1) with the initial conditions set at time to: (7, ¥o)
=(z,y, 2, Vg, Uy,vz)\to .

Several types of ODE’s numerical integration, describing the motion of the satellite, were
considered, including nested Runge-Kutta methods and their modifications. Among the modern
methods for solving non-rigid systems of ODE, the best results are obtained by the Dormand-
Prince method 8(7) with adaptive step with error control, which was chosen for integrating the
system of equations, describing the motion of the satellite(1).

Runge-Kutta methods [8] for solving the differential equation:

y' = flz,y(2)) (7)
with an initial condition
Yy (z0) = yo (8)
are given by the following calculation formulas of approximate values of the solution y,41 =
Y(Tp+1) in the zpy1 = xp + by

Ynt1 = Yn + Z ik (9)
=1
where
k1 = hnf(wmyn) (1())
1—1
k; :hnf a:n—i—cihn,yn—i—Zaijkj , 1=2,3,...,5, (11)
j=1

s — the number of stages of the Runge-Kutta method and
i—1
ci=Y_ aj, i=2,3,...,5. (12)
j=1

In practice, nested Runge-Kutta formulas are often used, in which, together with formulas (9)-
(12), the error estimator formula is used:

S
i1 = Yo + ) Giks, (13)
i=1
where is the new approximate value of y(z,41) calculated with a new set of weight multipliers
a;, 1=1,2,...,s.

The approximation orders of the methods given by formulas (9) and (13), as a rule, differ. For
such Runge-Kutta methods, the notation RK p(q) is used, where p is the order of approximation
of formula (8). q is the order of approximation of formula (13). In [1], Dormand and Prince
proposed a modification of the Runge-Kutta method RK8(7) (now designated as DOPRIS(7)).
They considered a 13-stage Runge-Kutta method of orders 8(7). To reduce the number of
equations, the following additional conditions were proposed (reduced system).

13
> aiai =a;(1-¢), j=1,...,13, (14)
=1
12
> aiai = a5 (1-¢), j=1,...,12, (15)
=1
ai2:0, i:4,...,13, aig,:(), i:6,...,13, (16)
&i:ai:O, i:2,...,5, (17)
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12 clf/‘_"_l
Zaijcg?:le, k=1,2; i=k+2,...,13, k=3;; i=6,...,13 (18)
j=1
13
Zal (1 — Ci) aij = 0, j = 4, 5, (19)
i=1
13
Zaici (1 —¢)ay =0, Jj=4,5, (20)
i=1
13 12
Zz&l (1 — Ci) aijajk = 0, k= 4, 5, (21)
i=1 j=1
13
S (@i —a,) (1—¢;)ay =0, j=4,5, (22)
i=1

This model has 10 free unknowns: ¢, c¢3, cg, ¢7, ¢g, Cio, Ci1, Q13, 12, ags. We
choose the values of these free unknowns different from each other and at least one of the
unknowns @13, aig different from zero. The remaining unknowns are found by solving the
system (14)-(22). Ratios (14)-(22) for coefficients oy, i, ¢ = 1,...,13, ¢;, j =2,...,13,
ajj,j=1,...,i—1, i=2,...13 were proposed in [1]. A set of coefficients satisfying the ratios
(14)-(22) were also selected there (see Table 2 in [8]).

The Dormand-Prince method 8(7) has the smallest error among all schemes of the order.
Compared with the Fehlberg method, the Dormand-Prince method showed the best results in
terms of global error, as well as the total number of calls to the right side of the system with
disturbing accelerations acting on the satellite in orbit, as shown in the Table 2.

8th

TABLE 2 — Global errors of numerical methods for one orbit revolution for the first group of initial
values

MeTO,ZL IIOI'PENIHOCTDb

Fehlberg45 7.42775-10712
DOPRI5 1.95463 - 1013
Fehlberg78 5.45348 - 10~ 12
DOPRIS 1.06343 .10~ 13

The global error is understood as the maximum value from the norms of the vectors of
differences between the exact solution and the numerical solution on the interval grid (the
interval is equal to the orbital period, in this case about 97 minutes) using the appropriate
integration method in the absence of rounding errors.

e(7) = max |yi — 2,

where |-| —is the selected norm in R™, m is the dimension of the state vector of the satellite,
m

Y = (wll, x%, Xy ) — approximate solution in node t;; z; = z; (t;) — is the exact solution in
the same grid node.

By default, when the state vector consists only of the position vector and the velocity vector
of the satellite, then the dimension in the standard case is m = 6.

As a rule, numerical integration errors are not a large source of errors compared to errors
in modeling the model of perturbing accelerations, which are the main sources of errors. It
is assumed that the integration method used is correctly configured with the correct step size
control.

2.8 Covariance propagation

In the probabilistic formulation, the position of the satellite in orbit is determined by the
results of the propagation of motion parameters and the propagation of the covariance matrix.

The probabilistic nature of the satellite’s location at the propagated point in orbit is taken into
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account, based on the accuracy of determining the orbit parameters from GPS navigation data.
The accuracy of determining the orbit parameters is set by the covariance matrix at the time of
clarifying the initial conditions of the satellite motion.

At the same time, it is assumed that the scattering of the elements of the state vector of the
satellite obeys the normal distribution law.

The covariance matrix, in turn determines the scattering ellipsoid (a special case of the phase
space region) in which the satellite can be located with a given probability level.

Orbit

Ficurge 1 — Error ellipsoid

In the probabilistic formulation, an ellipsoid of scattering is defined at any given time, covering
a region of space in which a satellite can be located with a given level of probability. Suppose
that the scattering cloud is approximated by an ellipsoid of rotation curved along the orbit of
the satellite, with axes equal to o, . The center of this ellipsoid is the position of the satellite
in orbit at the initial epoch.

It is assumed that the measurement errors of the six orbital elements have a normal distri-
bution. Thus, the satellite location error also represents a three-dimensional normal distribu-
tion [10], [11]. Covariance matrices should statistically correspond to the actual accuracy of the
estimate in accordance with three-dimensional normal (Gaussian) probability distributions.

According to [12], the probability of the distribution of points in an ellipsoid varies as follows:

4 KD k7 I
P=— |-+ ———-—+...),
V2 6 20 112 864

where k-magnification factor.

The probability of the distribution of points in the error ellipsoid changes with the change of
K as follows:

at k=1, the probability of distribution of expected data points is 19.9%;

at k=2, the probability of distribution of expected data points is 73.9%;

at k=3, the probability of distribution of expected data points is 97.1%.

The covariance matrix is provided in the form of a symmetric matrix of size 6 x 6 and
characterizes the uncertainty in the state vector of the satellite. The diagonal elements represent
the variance in each of the components (R,T, N, R,T,N ), and the non-diagonal terms give the
covariance between the two named components. The covariance matrix is represented in the
orbital coordinate system (R,T,N, Vg, Vp,Vn):

CRr CTr CNgp CRp CTgp CNg
CRr CTr CNp CRr CTr CNp
CRy CTIny CNy CRy CTy CNy
CRy CT;, CNy CRp CTy CNy
CRy CTy CNy CRy CTy CNg
CR; CT; CN; CR; CT; CN;
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High-precision satellite orbit propagation with estimation of the covariance matrix

This representation allows you to most clearly represent the errors in determining the param-
eters of the orbit.

A numerical experiment on the propagation of the covariance matrix shows that the diagonal
elements of this matrix corresponding to deviations along the radial and normal directions in
the orbital coordinate system have a harmonic character.

Let x(t) = (74,7, 7k, vs,v;, V) — be the state vector of the satellite. As is known, the state
vector can be described by a stochastic dynamical system

z=f(z,w,t), (23)

where w is the noise of the system. Let the measurements zj of the state vector zp=x(tx) at
time t=t; be expressed as follows:

zk=hy, (tx, o)+ wy, (24)

where wj — is the noise of the system.

Here hj denotes the model value of the k' observation as a function of time ¢, and the
instantaneous state x(tp) at the initial moment of time. Errors arising from rounding errors,
small nonlinearities, simplifying the force model will propagate without further correction by
subsequent measurements and will lead to an erroneous and divergent estimation of the satellite
state vector. To avoid such a situation, the addition of technological noise (process noise) is
used.

The values of w;, take into account the difference between actual and simulated observations
due to measurement errors, which are usually considered randomly distributed with a zero mean
value.

Let Zr_1 be an estimate of the state vector at time ¢;_;. Using Z;_1 an a priori estimate
of &, is obtained. After the measurements z, a correction of the a priori estimate is carried
out and a posteriori estimate of i; is obtained.

At the initial moment, the following are given: Zj_1, Pk;—l .

The a priori estimate &, is obtained by integrating equation (23) with the initial condition
on the interval [tg_1, tx] =(tx—1) =Tg—1, i.c.

123
.ﬁ;:i'kfl—l- f (i‘kfl,w,t) dt. (25)

tk—1
b = 2Twl gt ) 1)  with an initial condition ® (ty 1, ty_1) = 1.
Errors in modeling the true dynamics of the system at this step may introduce a priori some
error in the estimation, which is quantified in the error covariance matrix P .
An a priori estimate of the error covariance matrix is obtained from a linearized dynamical
system:

P =®_1(ty, tio1) Py @1y (th, ti1)+Q, (26)
where
by —cFeidt g _Of@wt) , (27)
ox w=dy_
20 00 00
0 op 00 00
00 o020 00
Q= 00 003 00 (28)
00 00 o3 0

y
00 00 0 o3
where () is the covariance matrix of the system noise.
The expected system noise (system dynamics modeling errors) and measurement noise (ir-
regular measurement fluctuations) are used to weigh the significance of two updates relative to
each other.
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Modeling the noise of the Q process is a difficult task, since it is necessary to take into account
various sources of disturbances. These sources are, for example, the geopotential of the Earth,
the atmospheric drag/density, the pressure of solar radiation, disturbances from third bodies
and tidal forces.

The accuracy of propagation the parameters of the satellite motion is determined by the
covariance matrix, which is calculated by the formula (26), with a known matrix at the previous
step P]:il .

®,_1— the matrix of partial derivatives of the elements of the vector of motion parameters
at time ¢ by the elements of the vector of motion parameters for the initial epoch. The above
ratios (25)-(26) allow us to propagate the covariance matrix together with the parameters of the
satellite motion.

Also a method to reduce the influence of numerical errors in calculations for updating the co-
variance matrix has been applied on propagation process, which together with a highly accurate
propagation, can be applied in different satellite’s flight control tasks, where the satellite’s orbit
determination errors taking into account.

3 Results and Discussion

3.1 Developed software «Orbit Propagator tools

The OPT (Orbit Propagator Tool) software developed by us is based on a high-precision
model for orbit propagation of LEO satellites. This software makes it possible, with a given
model of satellite motion and known statistical characteristics of orbit determination errors, to
propagate the covariance matrix together with the state vector.

The OPT is a software tool designed to support operators in Flight Dynamics routine opera-
tions and able to use it for high-precision orbital analysis to support various space missions and
planning in-orbit maneuvers. Software tool allows you to propagate the orbital parameters of
the satellite (state vector, Keplerian elements) at a given interval with the writing of the results
in the selected coordinate system in the report files. Also in the software there is a possibility
of constructing two-dimensional graphs of orbital elements for analyzing the evolution of the
elements of the satellite orbit.

The software contains a flexible system of configurable parameters of the acceleration model
and the integration method (Fig. 2), including the choice of sources of planetary ephemerides,
the choice of a set of configuration parameters. And it can be used as a standalone tool or in
combination with advanced satellite operations planning tools in orbit. A high level of design
flexibility is also achieved due to an extensive set of input and output parameters.
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x
Satellite name: [KazSTSAT |
Earth's Gravitational Force Solar radiation pressure
Gravity Field Solar radiation pressure
Model  EGM2008 v Cross-section area 0673
Degree |70 Mass 10289
[ | SRP coefficient (Cr) | 1.06
Order |70
Shadow model Cylindrical w
Solid tides
Ocean tides
Atmosperic model
Atmosperic drag Gravitational perturbations of the Sun
Model Modffied Hamis-Priester v Gravitational perturbations of the Moon

Drag coefficient(Cd) 22

SolarFiux

fverage F107 (1415

Integration parameters
Integration method
Multistep method with variable order and with variable stepsiz v

rel_err

1E-13
abs_emr

1E09

Save Cancel

FicurEeE 2 — Configurable parameters of the dynamic model of perturbation forces

3.2 Simulation data

The results obtained by modeling the satellite motion under various scenarios with a different
set of disturbing forces, as well as the use of numerical methods for integrating high orders
with automatic step selection, demonstrate high accuracy in propagation the satellite position
in orbit. The propagation of the satellite state vector in orbit is based on a dynamic force model
that includes the Earth’s gravity, polar and ocean tides, lunar-solar disturbances, atmospheric
drag and solar radiation pressure, as well as relativistic effects.

On coordinate conversions effect the Parameters of the Earth’s rotation of the IAU(The
International Astronomical Union) and IERS services are taken into account , as well as the
geomagnetic index, atmospheric data from NOAA are taken into account on calculations of
acceleration due to atmosphere drag effect.

Several test cases were created for each orbit to test the ability of the OPT software to work
accurately using various combinations of forces. The forces used for testing on Earth included
models of the Earth’s gravitational field EGM 2008 , perturbing accelerations from other planets,
modified Harris-Priester models of atmospheric drag and solar radiation pressure (SRP). The
degree and order of the geopotential of the Earth were set as constant from 0% 20 to 71 % 71.
The parameters in Table-4 show the composition and parameters of the disturbing forces used
for the test run of the software for demonstration purposes.

All calculations on the numerical integration of the equations of motion of the satellite are
carried out in the ECIJ2000 coordinate system (an inertial coordinate system with the origin
at the center of mass of the Earth for the epoch J2000). The duration of the propagation, the
size of the report output step and the size of the integrator step varied for different test cases.
The time steps of the integrator were chosen for the most accurate comparison of the results of
the test case. Units of measurement when comparing state vectors: m,m/sec.

For test case, the initial epoch was chosen as 2022/04 /28 21:38:30 UTC. The initial conditions
used for the test orbits are presented in Tables 3.

When we propagated the orbit of the KazSTSAT satellite, the values of the variables of the
perturbing forces model from the following table were used.
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TABLE 3 — Initial State vector in Earth Mean Equator and Equinox of J2000 reference frame

state vector in EME J2000 Kepler elements
x 6652911.169537571 Semi-major axis (a) | 6968.860759643917
Y 871175.193766317 Eccentricity (e) 0.002351096390
z 1864622.407990260 Inclination () 97.621163623454
Vg 2141.603813809 | Longitude of the ascending node (€2) | 185.329246514044
Uy -770.204970971 Argument of perigee (w) 91.536956373807
Uy -7217.886453230 Mean anomaly (M) 72.533302431270

TABLE 4 — Force Model Parameters

Parameter OPT
Area|m"2] 0.675
Satellite Mass|kg] 103.9
Integrator RK7(8)
Integrator error tolerance le-013
Integrator error control Yes
n (degree) 20
m (order) 20
Sun true
Sun position True: DE405
Moon True: DE405
SRad(solar radiation pressure) True
SRP: sun position True: DE405
Shadow modeling Cylindrical
Drag true
Atmospheric density model Harris-Priester
Cr(Radiation pressure coefficient) 1.06
Average F10.7 141.5
Atmospheric Drag: Geomagnetic Flux Update Constant
Geomagnetic index(Kp): JR and MSISE only 3
CD (Drag coefficient) 2.2
ERS EOP format used Bulletin B(IERS)
Polar Motion calculation enabled
Solid tides enabled
Ocean tides enabled
Relativistic Accelerations enabled

TABLE 5 — Parameters and variables of the model of disturbing accelerations

gravity model order 70
mass [kg] 102.89
area [m"2| 0.675
Cy 1.06
Ca 2.2
averageF10 7 141.5
integration step size [s| | 10.0
relative error 1E-13
absolute error 1E-09
Sigma 100.0

We took the parameters of the Earth’s rotation and time corrections according to the following
table.
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TABLE 6 — Earth rotation parameters and time corrections

UT1_UTC [-0.24081
UTC_TAI | -37.0
Zpole 0.1627
Ypole 0.4322

The results of the OPT propagation are compared with the results obtained in the
GMAT(General Mission Analysis Tool) in order to show the equality of the results.

General Mission Analysis Tool (GMAT) is an open source software system for space mission
analysis and for solving the navigation tasks developed by NASA in collaboration with Research
Institutes.

The GMAT’s propagator has been verified and validated [13| against comparison with prop-
agators, that are include as part in Free Flyer and STK. These toolkits are presented as one of
the most precise and reliable orbit Simulation tools.

TABLE 7 — Test scenario: Propagation of the state vector for KazSTSAT satellite on LEO, duration
= 1 day. Composition of forces: Earth-EGM96-Sun-Moon- HPAtmModel -SRP- cylindrical

OPT GMAT | Differences
z | 5152688.373 | 5152688.531346 0.158346
y | 1178317.233 | 1178317.226069 | -0.006931
z | 4524117.020 | 4524116.838835 | -0.181165
Vg 5032.404 5032.403807 | -0.000193
vy -205.331 -205.331045 | -0.000045
vy -5653.509 -5653.509171 | -0.000171

With such a combination of forces, the accuracy of propagation the position of the satellite
was 0.240712 meters, according to the velocity vector 0.00026 m/s.

TABLE 8 — Comparison results after 7 days from the initial epoch. Composition of forces:
Earth-EGM96-Sun-Moon-HPAtmModel-SRP- cylindrical State vector in J2000. Epoch 2022/05/05

21:38:30.000 UTC

OPT GMAT | Differences
T | -6594221.923000 | -6594224.764733 | -2.841733
y | -1628674.335000 | -1628673.392481 0.942519
z | -1546954.019000 | -1546942.627187 | 11.391813
Uy -1849.999000 -1849.986891 0.012109
Uy 600.779000 600.781991 0.002991
v, 7311.571000 7311.573858 0.002858

With such a combination of forces, the accuracy of propagation the position of the satellite
was 11.7 meters, with a velocity vector of 0.013 m/s.

It is assumed that the standard deviation of the initial state of the satellite state vector is 100
m (a priori sigma position) and 1 m/s (a priori sigma velocity), respectively. These statistics
are used to generate the initial a priori covariance matrix.

When using various combinations of models, we noticed that among the orbital models used
for satellite in low-Earth orbit, the geopotential and the atmospheric drag model are the main
sources of errors, and therefore they need to be modeled more accurately.
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Report settings:

[] State vector EME2000

[[] State vector ECl TeD

[] Kepler elements EME2000

Kepler elements ECI TeD

["] Median Kepler elements EME2000

Median Kepler elements TaD

[] Full acceleration in the ICRF/EME2000 system

[] Acceleration wvector due to the atmospheric drag in the ICRF/EME2000 system
["] Magnitude of the acceleration vector due to the atm. drag in the ICRF/EME2000 systen
[] Sun's Geocentric position and velocity in the ICRF/EME2000 system

[] Moon's Geocentric positien and velocity in the ICRF/EME2000 system

[] State vector EME2000 [*.csv]

[[] State vector ECI TeD [".csv]

[] Kepler elements EMEZ000 [*.csv]

[] Kepler elements ECI ToD[*.csv]

[[] Cartesian coordinates (WGS-84)

LLA Position - Geodetic coordinates (WGES-84)

Ficure 3 — Composition and form of the output files of the report with ephemerides

Plot of selected orbital elements in the long-term analysis of the evolution of orbital elements
using "medium elements" for a mission in LEO orbit, for example, at an interval of 6 months,
are shown in Fig. 6-9.

The computational performance of numerical propagator calculations with a different combi-
nation of forces, step and interval is presented in Table-9.

TABLE 9 — Calculation time for propagation the state vector of the satellite in the OPT software

Test case OPT
time[sec]
LEO SSO 1 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 2.4
LEO SSO 1 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 2.0
LEO SSO 3 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 6.5
LEO SSO 3 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 6.0
LEO SSO 3 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 5.9
LEO SSO 7 day with step=10 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP —cylindrical 15.9
LEO SSO 7 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP —cylindrical 14.6
LEO SSO 7 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 15.1
LEO SSO 7 day with step=300 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 13.8
LEO SSO 30 day with step=30 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 70.2
LEO SSO 30 day with step=60 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel-SRP -cylindrical 60.3
LEO SSO 30 day with step=300 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel-SRP -cylindrical 61.6
LEO SSO 365.25 days with step=600 sec: Earth-JGM3(20x20)-Sun-Moon-HPAtmModel - SRP -cylindrical 799

Calculations were performed on a portable computer with an Intel Core i7-4710HQ processor
with 8 GB RAM.

The presentation of all the results obtained in the software is beyond the scope of one article,
so we limited ourselves to demonstrating the operation of the test scenario and the propagation
process in the OPT software.

Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2022, Vol. 141, Ne4

19



High-precision satellite orbit propagation with estimation of the covariance matrix

B ———————————————
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FicURE 4 — Evolution of the Semi-major axis in the 30-day interval
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FiGURE 5 — Evolution of the Semi-major axis over the 6-month interval
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FicUuRrE 6 — Evolution of the inclination over the 6-month interval

3.2 Verification

This section describes the validation processes and results for the OPT tool. For a realistic as-
sessment of accuracy, the user must make sure that the models of disturbing forces, respectively,
and the propagation results can be trusted with an accuracy above 15 meters.
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Ficure 7 — Evolution of the eccentricity over the 6-month interval

File Edit Format View Help
bEnErEtion time: Mon Dec 19 15:19:08 2022 -

Kepler elements: the ICRF/Earth Mean Equator and Equinox of 12080 (EME2600)

Date/Time(UTC) Semi-major Axis(km) Eccentricity Incl. (deg) RAAN(deg) arg. of Perigee  Mean anomaly(deg)
2022/04/28 21:38:30.000 ©968.868759643917 ©.882351096398 97.621163623454 185.329246514044 91.536956373807 72.533302431270
2022/04/28 21:38:40.000 696 a. 97.621106280374 185.329262409917 91.974115962945 72.719279137361
2822/04/28 21:38:50.008 6969.867326755198 9.882337178153 97.621851165354 185.329277042266 92.400893987805 72.915658823836
2022/04/28 21:39:00.000 6969.164817741935 L 6 185. 7 92. 73.122722758007
2022/04/28 21:39:10.008 6969.258385722988 ©.682321490571 97.628947722436 185.329382762335 93.222068368522 73.348813533864
2022/04/28 21:39:20.000 6969.347986646916 8.082313001227 97.620899445157 185.329313834896 93.61581643355@ 73.5782530823426
2022/04/28 21:39:30.000 6969.433579028279 8.082304092232 97.620853497276 185.32932390@106 93.997888@67131 73.811379789352
2022/04/28 21:39:40.000 ©969.515124570576 ©.082294772377 97.620809903141 185.329332951360 94.367938540587 74.064538376563
2022/04/28 21:39:50.000 6969. o 1616 . 7 185. 94.725617293955 74.330079039346
2022/04/28 21:40:90.000 ©969.665939147883 ©.082274938008 97.620729868186 185.329348215981 95.070567891358 74.608357593305
2822/04/28 21:40:10.008 6969.735147422678 9.082264443664 97.620693469858 185.329354534076 95.402425728221 74.899738113116
2822/04/28 21:40:20.008 6969.808185753346 8.0 8723 97 185. 95.720814697349 75.20459618753@
2022/04/28 21:40:30.000 6969.861827302534 ©.082242354364 97.6208627993142 185.329364808558 96.025343745692 75.523322359443
2022/04/28 21:40:40.000 6969.9176454@7755 8.082230782269 97.620598941921 185.329368873413 96.315684269352 75.856324724514
2022/04/28 21:40:50.000 6969.97@813482674 8.082218874712 97.62057236@982 185.32937229637@ 96.591169@10523 76.204038026385
2022/04/28 21:41:90.000 6970 1 o 97.620548257053 185.329375132494 96.851592653857 76.566883854172
2022/04/28 21:41:10.900 6970 9.002: 60 185.329377436901 97.096413828418 76.945344631957
2022/94/28 21:41:20.800 6970.1813620865957 0.882181272876 97.628587582525 185.329379264648 97.32515798629@ 77.339888826944
2822/04/28 21:41:30.008 6970.136482985013 9.682168161212 97.620490863272 185.329380670692 97.537339851269 77.751808894574
2822/04/28 21:41:40.008 6970.167241858421 9.082154737206 97.620476724799 185.329381709913 97.732466582108 78.179178923082
2022/04/28 21:41:50.000 6978.193621846099 8.082141163084 97.620465894744 185.329382437176 97.918@38590583 78.624900219154
2022/04/28 21:42:00.000 6978.215614135399 8.082127321929 97. 18 185. 9 79 69 ‘as1
2022/04/28 21:42:10.000 ©970.233209847876 9.082113267678 97.620449392218 185.329383175712 98.218493912625 79.571856313939
2022/04/28 21:42:20.900 ©970. o 1. 97. 97385 98. 80.072505097993
2022/04/28 21:42:30.000 ©970.255194493631 a. 97. 1 185.329, 629 98.. 80.593554187205
< >

Ln1, Col 1

Ficure 8 — Keplerian elements of the orbit in EME J2000

File Edit Format View Help
Generation time: Mon Dec 19 15:19:@8 2022 ~

Kepler elements: the Earth-centered inertial (ECI) coordinate frame. True Equator and True Equinox of date.

Date/Time(UTC) Semi-major Axis(km) Eccentricity Incl. (deg) RAAN(deg) arg. of Perigee  Mean anomaly(deg)
2022/04/28 21:38:30.000 6968.860759643914 ©.862351096396 97.631246608532  185.595130246607 91.413621125006 72.533302431275
2022/04/28 21:38:40.000 696 i @. 97.631. 185.59 91.850788" 72.719279137361
2022/04/28 21:38:50.000 6969.067326755197 ©.802337178153 97.631134367957  185.595170019402 92.277558776284 72.915650823835
2022/@4/28 21:39:00.000 6969.164817741993 ©.802329552076 97.631081476642  185.595183549566 92.693649495010 73.122722758018
2022/04/28 21:39:10.000 6969.258385722908 ©.802321490571 97.631036922165  185.595195908423 93.098733790810 73.340813533867
2022/04/28 21:39:20.000 6969. 347986646916 ©.802313001227 97.638982669816  185.595207146053 93.492481271455 73.570253023423
2022/04/25 21:39:30.000 6969.433579620277 ©.862364892232 97.638936744586  185.595217312918 93.574552919775 73.811379709357
2022/04/25 21:39:40.000 6969.515124578575 ©.802294772377 97.638893178931  185.595226459879 94.244603467131 74.064538376563
2022/04/28 21:39:50.000 6969.592588486692 ©.802235051016 97.630851972356  185.505234638355 04.602282173528 74.330079039352
2022/04/28 21:49:00.000 6969. 665939147883 ©.802274935008 97.630813170864  185.595241900332 94.947232783119 74.608357593385
2022/04/28 21:49:10.000 6969.735147422672 ©.802264443664 97.630776786369  185.595248298457 95.279090631319 74.899738113111
2022/04/28 21:49:20.000 6969.800185753346 ©.802: a7. 76 185 95.597479610931 75.204596187527
2022/04/28 21:49:30.000 6969.861027382536 ©.802242354364 97.638711334661  185.595258717046 as 75
2022/04/28 21:49:49.880 6969.917645407754 o. - 96 75.856324724519
2022/04/25 21:48:50.000 6969.970813482673 @.802218574712 97.638655720742  185.595266327527 96.467833950552 76.204036026352
2022/04/25 21:41:00.000 6970 @. 97.630631623988  185.595269216904 96.728257660252 76.566883054172
2022/04/28 21:41:10.000 6970 ©.002: a7 30 185.595271569161 96.973075761962 76.945344631966
2022/04/28 21:41:20.000 6970.101362065953 ©.802181272876 97.6308500880507  185.595273439344 97 77.

2022/04/28 21:41:30.000 6970.136482985009 ©.802168161212 97.630574245361  185.595274882400 97.414004815131 77.751000094582
2022/04/28 21:41:40.000 6970.167241858415 ©.802154757206 97.630566118206  185.595275953192 97.609131549940 78.179176923097
2022/@4/28 21:41:50.000 6976.193621846096 ©.802141165084 97.630548482798  185.595276706573 97.7867@3561537 78.624990219162
2022/04/28 21:42:00.000 6976.215614135392 ©.802127321929 97.638539371357  185.595277197462 97.946215899294 79.888692327068
2022/04/25 21:42:10.000 6970.233209847878 ©.862113267678 97.638532784822  185.595277480915 93.657158857759 79.571856313936
2022/04/25 21:42:20.000 6970. 246483958352 @.662099025125 97.638528728324  185.595277612166 93.200619060034 86.072505297999
2022/04/28 21:42:30.000 6970.255194493630 ©.002084614926 97.630527210869  185.595277646632 98.311 ge. .
Ln9, Col 43

FicuRrE 9 — Keplerian elements of the spacecraft orbit in the EME ToD (true-of-date epoch)
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File Edit Format View Help
Generation time: Mon Dec 19 15:19:88 2022 ~
State vector: the Earth-centered inertial (ECI) coordinate frame. the Earth Mean Equator and Mean Equinox of the 12000 epoch(EME2608)

Date/Time(UTC) xe(km) y(km) 2(km) vx(km / sec) vy(km / sec) vz(km / sec)
2022/84/28 21:38:30.008 6652.911169537571  871.175193766317  1864.622407996268 2.141603813869 -8.7706204970971 -7.217886453236
2022/64/28 21:38:40.000 6673 62 863.42 1792.334535987636 2.862892597373 -6.736449962793 -7.239545114685
2022/04/28 21:38:50.000 6694.168218778583  855.566502075648  1719.834366515767 1. -o. 7.

2022/04/28 6713.611896351262 847 1647.1: 1.904757170674 -8.860661124152 -7.280285286725
2022/64/28 6732.262622506038  839.553506051230  1574.231537418538 1.825351866481 -0.810624895673 -7.299362051571
2022/64/28 . 6750.118225641355  831.397929142650  1501.146137196123 1.745734151289 -6.826492548399 -7.317573613378
2022/04/28 21:39:30.000 6767.176629224692  823.144670279664  1427.882956203923 1.665913544770 -0.830262912605 ~7.334917862859
2022/€4/28 21:39:40.000 6783.435852042043  §14.792999945792  1354.450677666999 1 -8. -7.351392797499
2022/64/28 21:39:50.000 679559400543 806.345 1288 1.505 -0.849507157142 ~7.366996522045
2022/64/28 6813.549308516423  797.803191652037  1207.113657231646 1.425329927598 -6.858978759055 -7.381727248686
2022/04/28 6827. 789.1 1133.226374932338 1.344793411828 -0.868348515796 ~7.395583296936
2022/04/28 6840.444660206768  780.436564516115  1050.204912143703 1.264101932746 -8.877615319222 -7.468563093324
2022/64/28 6852.681612606238  771.614510398982  955.058038586551 1.183265136914 -0.886778073659 -7.420665171046
2022/064/28 6864.109518601787  762.761: 910, 1 ) -7.431888169715
2022/04/28 6874.727045873209  753.698150482452  836.423209867407 1.021194199192 -0.904787115546 -7.442230835415
2022/04/28 6884.533006885888  744.605968710070  761.952860569250 ©.939979426302 -8.913631274739 -7.451692020895
2022/64/28 6893.526279036194  735. 687.3923111959: [ 113 -6.922367128873 -7.460270636642
2022/064/28 6901.705844751215  726.158909588648  612.750391703090 8.777239761205 -8 7 -7.46°

2022/04/28 6909.070783666476  716.80638092109@  538. 8.695734: -8 -7.474776833717
2022/04/28 6915.620272669548  787.369165573713  463.257805016806 8.614151481548 -9.947914516493 -7.480702776227
2022/64/28 6921 1 897, 388.424837316835 0. 0. -7.4857431158966
2022/04/28 21: 6926.2° 688, 313. 1 0. -0.964386210684 -7.489897363804
2022/04/28 21:42:10.000 6930.369270027971  678.561119819902  238. 1 0. -9.972451061976 -7.493165121457
2022/@4/28 21:42:20.000 6933.65067660505¢  668.796764683440  163.685549784347 ©.287248252202 -0.980400681928 -7.495546111465
2022/64/28 21:42:30.000 6936.113979433084  655.053493396304 58.721879257233 ©.205416344671 -0.988234137874 ~7.497046162182
2022/04/28 21:42:40.000 6937.758940388204  649.032472201539 13.747703226483 ©.123573504840 -0.995950511638 ~7.497647218791

v
Ln1, Col 42

FicUurge 10 — The state vector in the EME J2000

The results of the OPT propagation are compared with the results obtained in GMAT®, as
well as with the GPS receiver navigation solution. For example, the residuals resulting on state
vectors propagation for 7 days from the same epoch time by both the GMAT and developed
OPT tool, are shown in figures 11-12.

Position Differences
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FiGURE 11 — The difference in the position vector over a one-week interval (m)

The OPT propagation results are compared with the GMAT results with the maximum nor-
malized position and velocity difference over the propagation duration. This results displayed
in a table format. To determine whether the comparison value of the test case modeled in the
software is acceptable, an acceptance matrix was created, presented in Table 10. Comparative
results of propagation the satellite orbit on one orbit are shown in tables 11-15, obtained in
different coordinate systems.

Also, for verification purposes, we compared the orbit propagation at various time intervals
with the navigation solutions of the SGR-07 GPS receiver installed on board the KazSTSAT
satellite.

8General Mission Analysis Tool, Software Package, NASA Goddard Space Flight Center, Greenbelt, MD,
2007, URL: http://gmat.gsfc.nasa.gov
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Velocity Differences
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FiGURE 12 — The difference in the velocity vector over a one-week interval (m/s)

TABLE 10 — Acceptance Matrix

Difference in

Acceptable position difference (m)

Non-spherical gravity <0.001
Point mass gravity <0.001
Solar radiation Pressure <0.6
Atmospheric Drag <20

TABLE 11 — The test scenario for comparing of the OPT/GMAT software results (Sun-synchronous

orbit)

Test case Position difference(m) | Velocity difference(m/s)
Earth-JGM3-0-0-0-0 1.203 0.002
Earth-JGM3-Sun-0-0-0 1.203 0.001
Earth-JGM3-Sun-Moon-0-0 1.203 0.002
Earth-JGM3-Sun-Moon-0-SRP-cylindrical 1.020 0.001
Earth-JGM3-Sun-Moon-HPAtmModel-0 1.281 0.0015
Earth-JGM3-Sun-Moon-HPAtmModel-SRP 1.2 0.001
Earth-JGM3-Sun-Moon-HPAtmModel-SRP-cylindrical 1.0402 0.0009

TABLE 12 — The test scenario for comparing of the OPT/GMAT software results (Sun-synchronous

orbit)
Test case State vector State vector delta
(OPT) (m, m/s) | (GMAT) (m, m/s)

Earth-JGM3-Sun- -1344.43852 -1344.438283 | -0.23726362
Moon-HPAtmModel-SRP- 4977.977623 4977.979675 | -2.052247331
cylindrical -4697.661829 -4697.659723 | -2.10593889
0.0492403 0.049241026 0.0007259

5.181641 5.181639 -0.0020000

5.4932774 5.493279382 | 0.001981803
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TABLE 13 — The test scenario: KazSTSAT, 2019/01/17 12:00:00.0 UTC (EME J2000)

X(m) Y (m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)
OPT 241433.619705 | 6487906.368239 | 2536797.612833 | 1009.703000 | 2747.069500 | 6970.948231

GMAT | 241433.619705 | 6487906.368239 | 2536797.612833 | 1009.703000 | 2747.069500 | 6970.948231

delta 0 0 0 0 0 0

TABLE 14 — The state vector in the EME True-of-Date coordinate system

X(m) Y (m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s)
OPT -209600.1997021 | -6488907.1731688 | -2537067.7599385 | -1008.5101100 | 2742.6862989 | -6972.8465815
GMAT -209600.199642 | -6488907.1731640 -2537067.759955 | -1008.5101100 | 2742.6862990 | -6972.8465820

delta 5.92E-05 4.8E-06 -1.7E-05 0 1E-07 -5E-07

TABLE 15 — Keplerian elements of the orbit in EME J2000

X(m) | Y(m) Z(m) | Vx(m/s) | Vy(m/s) |  Va(m/s)
OPT 6967400.359 | 0.002037 | 97.868045 | 90.96413 | 99.216281 102.110747
GMAT 6967400.359 | 0.002037 | 97.868045 | 90.96413 | 99.216281 102.110747
delta -3.99537E-07 0 0 0 0 0

SGR-07 receives and decodes L-band signals from four or more GPS satellites and, using
range determination methods, is able to calculate the location of the satellite with an accuracy
of 15-25 meters, as well as determine the exact speed and time.

The SGR-07 receiver tracks C/A code signals at the L1 frequency from GPS satellites. Each
channel performs measurements of pseudorange, Doppler frequency shift and carrier phase in
the measurement epoch. These “raw” measurements are used to calculate the receiver position,
velocity and time (Position/Velocity /Time). The position and velocity are transmitted as arrays
of vectors in the WGS-84 coordinate system with reference to UTC time. The time is represented
as an exact location timestamp sent in GPS time format: the number of the week, the number
of seconds from the beginning of the current week and a fraction of a second.

Many tests were performed with a full set of considered disturbing accelerations. In OPT
software, when propagation movement, one of the processed vectors from a set of navigation
solutions that has been preprocessed was selected as initial conditions. During preprocessing,
abnormal errors were discarded according to the 3 - rule. Intervals were selected for propagation
the position of the satellite representing the passive sections of the satellite flight: 1 day, 3 days,
7 days, 14 days and 30 days. Then the propagated state vectors of the satellite at the end of
the interval in the EME J000 coordinate system were compared with the vector obtained by the
GPS navigation solution at the end of the considered intervals.

TABLE 16 — The state vector refined by GPS data and the corresponding orbital elements(true-of-date)

epoch 2022/04/28 21:38:38.000 UTC

Keplerian elements (ToD) value | State vector(ToD) value
Semi-major axis (a) 6960.925018138310 Ty 6623658.751
Eccentricity (e) 0.002047257271 Ty 903162.936
Inclination () 97.635627176777° T2 1950898.625
Longitude of the ascending node (2) | 185.592351005803° Vg 2238.240858
Argument of perigee (w) 85.199606512757° Uy -751.488029
Mean anomaly (M) 78.777122748204° Uy -7190.619141

Given the accuracy of determining the GPS receiver, it can be argued that the accuracy of
orbit propagation allows using this model and the integration method to solve most problems
of satellite orbit control.
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TABLE 17 — Comparison of the satellite orbit propagation at the end of the one-week interval with

the orbit from the GPS receiver navigation solution

epoch 2022/05/05 21:38:38.000 UTC

Keplerian elements (ToD) OPT GPS difference
Semi-major axis (a) 6969.242572 | 6969.242560 -1.2986E-05
Eccentricity (e) 0.001758 0.001759 -1.72E-07
Inclination () 97.628551° 97.628552 -2.13E-07
Longitude of the ascending node (€2) | 192.397495° | 192.397494 -1.634E-06
Argument of perigee (w) 63.393216° 63.393216 -1.94E-07
Mean anomaly (M) 283.824257° | 283.824255 -2.405E-06

4 Conclusion

In this research integration methods and a model of disturbing accelerations acting on the
satellite were studied. The efficiency of using the modified Dormand-Prince method 8(7) with
adaptive step with error control for the numerical solution of differential equations describing
the motion of the spacecraft to achieve a high accuracy during orbit propagation is shown.

The main purpose of this work was to show that the used propagation model and the inte-
gration method provide sufficient accuracy and are suitable for propagation the position of the
satellite, both on short-term and long-term time intervals. The use of an accurate model of
disturbing accelerations, using numerical methods of integration of high orders with automatic
step selection, demonstrated high accuracy of refinement of the state vector of the satellite in
orbit. It also provides a better estimate of the speed and, consequently, a better accuracy of the
propagation, thereby improving the accuracy in secondary tasks of satellite orbit control and
the accuracy of planning operations with the satellite payload.

The high-precision orbit propagation together with the updating the covariance matrix, can
be applied in many actual tasks on Flight Control Operational Planning and the safety in orbit,
where the orbit determination errors taking into account.

Such an approach, for example, has found its application for the task of Conjunction Assess-
ment analysis for closest approach cases between two space objects, where the collision avoidance
maneuver decision making process is based on a probabilistic approach.

The developed OPT software can be used as the basis for a number of applied tasks for
ballistic support the flight control of the satellite’s missions on LEQO.
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KoBapuauusaiablk, MaTpula 60/2KaMbIMEH >KOFapbl JJIAIKTeri KO3rajbIiC GoJI2KaMbl

AnHOTAaUUMA. Byn makanama Papemmn Anmaparrapaers(PA) nosunumsicelH KoFapbl JOuIAIKIEH GOJIZKay MOZEJIH
KOJITAHY YCBIHBLIA/IbI, OH/Ia OY3BbIIFaH YeyJIep aHbIKTaJIa/lbl, COHbIMEH KAaTap AJIbIHFAH CaHJIbIK HOTHKeJEeD YCHIHBLIAbI.
Fapein AnmaparrapbiHa 9cep eTeTiH Oapiblk Oy3yIIbl KYIITED MOJAEbJeHel, aTMocdepasblK KAapPCBhLIIbIK MOJIETIHIH
mapaMerpaepiniy, conpaii-ak IERS, EOP napamerpsepinin e3ekti mepekrepi kosnmaubuianbl. LEO-marpl opbuTasbik,
MO3UIMSIHBL OOJIKayFa apHAJIFaH o3ipJieHreH OaraapiiaMajblK KamTaMachld ery T'A yirysiH GacKapyabl KoJigay YIIiH
KOJIJIAHBLIAJbI, OyJl PETTE AlTAJbIK YaKbIT apajbiFblHAarbl T'A mosunus BekTopbl Ooiibiama 10-15 Merp meHreisin
Ieumiri kamramacels eriseni. F'A Ko3rasbICHIHBIH GepiireH MojesiHe »KoHe KYyil BEeKTOpbIMeH Oipre opOHMTaHBI aHBIKTAY
KaTeJiKTepiHiH, 6eJrili CTaTUCTUKAJBIK, CHIATTaMaJIapblHAa KOBapUALMSJIBLIK, MaTpula OoJsKaHaibl, Oys Oesncenmi T'A
opbuTachiH 6aCKAPY/IbIH KOIITEreH ©3€KTI MocesesiepiHie KOJIIaHbLIa/IbI.

Tyitin ce3nep: rapbim kemeci; I'A nosunumscein 60mkay; OpOUTAHBI AHBIKTAY; TOMEH OPOUTAJBIK OpbuTa; OPOUTAHBI
baraJjiay; Oy3ylIbl KYIITED; CAHJBIK MHTerpanus; Pyure-Kyrra amicrepi, KoBapuausiJIbIK MaTpUIA.
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BbICOKOTOYHBIN IIPOTHO3 OBU>KE€HUA KA c IIPOTrHO30M KOBapI/IaI.H/IOHHOI';[ MaTpHUIbl

AnHoranusi. B nmanHoill craThbe mpejjiaraercsl MCIOJIb30BATh MOJENb BBICOKOTOYHOI'O IPOTHO3UPOBAHHUM IIOJIOZKEHUS
KA, B KOoTOpOIi BO3MyIIamomue yCKOPEHHUs OIPEIeIeHbl, a TaKKe [IPeJCTaBJIeHbl I0Jly YeHHbIEe YUCIEHHbIE DE3YJIbTaThI.

Bcee Boamymaronme cuibl, geiicrBylomue Ha Kocmudeckuii annapar(KA) MozeaupyioTcs, HCIOIB3YIOTCS aKTyaJbHbIe
JAHHbIE I1apaMeTPOB MOIEIN aTMOC(EpHOro CcompoTuBieHHs, u Takke mnapamerpoB IERS, EOP. Pazpaborammoe
IIporpammuoe o6ecneuenne (I10) mya nporuosuposanus nosioxkenust KA mo opbure Ha LEO npuMeHUMO 1t TOJAEPAKKA
yupasiieHusi nojeroM KA, npu srom obecrieqnBaeTcss TOYHOCTh ypoBHsl B 10-15 MeTpoB mo BekTopy mnosioxkenusi KA Ha
HEJIeJIbHOM MHTEPBAJIe BPEMEHU.

Ilpu 3aganHOl Mozenn jBurkeHnsi KA M M3BECTHBIX CTATUCTHYECKUX XapPaKTEPHUCTHUKAX [OTPEIIHOCTEH OIpe/esleHus
OpbUTBHI BMECTE C BEKTOPOM COCTOSIHHS IIPOTHO3UPYETCS M KOBAPHAIMOHHASI MATPUIA, UTO HAILIO MPUMEHEHHE BO MHOTUX
aKTyaJbHBIX 3aJadax Io moaneprkke Jumamuku mosera KA.

KuroueBbie cioBa: Kocmuueckuit  Amnmapar, mnporHosupoBanme mnosoxkenust KA, omnpenenenme opbutsr,
HU3KOOpOUTAIbHAsT OpOUTA, OIEHKa OpPOWUTHI, BO3MYIIAIOIINE CHUJIbI, YUCJIEHHOE WHTerpupoBanue, meroanl Pynre-Kyrra,

KOBapuallMOHHAas MaTpHIlA.
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