Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2022, Vol.
139, Ne2, P.12-25
http://bulmathme.enu.kz, E-mail: vest math@enu.kz

GRNTI: 27.17.19
A. Nadjimzadah

University of California, Los Angeles, CA 90095, USA
(E-mail: arianaddress@gmail.com,)

Trees of Dot Products in Thin Subsets of R?

Abstract: A. Iosevich and K. Taylor showed that compact subsets of R% with Hausdorff
dimension greater than (d + 1)/2 contain trees with gaps in an open interval. Under the same
dimensional threshold, we prove the analogous result where distance is replaced by the dot
product. We additionally show that the gaps of embedded trees of dot products are prevalent
in a set of positive Lebesgue measure, and for Ahlfors-David regular sets, the number of trees
with given gaps agrees with the regular value theorem.

Keywords: Finite point configurations, regularity of generalized Radon transforms, geomet-
ric graphs.

DOI: https://doi.org/10.32523/2616-7182 /bulmathenu.2022/2.2

2000 Mathematics Subject Classification: 28A75, 49Q15.

1. INTRODUCTION

The theme of this work can be summarized in the following question: how large must a subset
of R? be for it to contain certain geometric structures? Though in our work we focus on dot
products, the the study of such questions was first motivated by distances.

If E is asetin R?, define its distance set by A(E) = {|z —y|: 2,y € E}. When E C R?
is finite, the study of the relationship between |A(E)| and |E| is the celebrated Erdés distance
problem. The conjecture is |A(E)| > |E|/log|E|, which was met up to a square root with Guth
and Katz’s bound of |A(E)| > |E|/\/log|E| [1]. One could ask what happens when E C R?
is infinite. A first notion of size that one learns in real analysis is the Lebesgue measure, which
we will denote from here onward by |- |. The following question could be posed.

Question 1. If |E| > 0, how large must A(FE) be?

A theorem of Steinhaus says that when |E| >0, E— E contains an open set around 0, so in
particular A(E) contains an open set. This is as large of a set in R? that we could ever hope
for, so we need a more refined notion of the size of infinite sets. Another notion of size that one
might encounter is the Minkowski dimension.

Definition 1 (Minkowski Dimension). Let N(E,e¢) be the number of balls of radius € > 0
required to cover the set F. Then the lower Minkowski dimension of E is given by

i . Jog N(E,¢)
dlmM(E) = ].Hgi)lélf W,
and the upper Minkowski dimension is
N . log N(E,€)
dimay(F) = limsup ————.
m(E) e—0 P log(1/e)
We can pose the following possibly more refined question.

Question 2. How large does dimp (FE) have to be for |A(E)| > 07
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Unfortunately this question is still uninteresting. There exist sets which have “full” Minkowski
dimension, in the sense that the lower Minkowski dimension is as large as it can be, yet their
distance sets have measure 0. In fact, they can be merely countable! Consider

E=Q%nJo,1]%

By the density of the rationals, it takes (up to a constant) 1/e? balls of radius € to cover E
regardless of how small we take €. Thus dim(E) = d, the largest possible dimension in R¢.
However A(FE) is the image of a countable set, so it is itself countable.

The deficiency in Minkowski dimension is that our covers can consist only of balls of the same
size. However this does make computations with Minkowski dimension easier. The Hausdorff
dimension does not have this issue, but it is often more difficult to compute.

Definition 2 (Hausdorff Dimension). Let
H3(E) =inf > 7,
J

where the infimum is taken over all countable coverings of E by balls {B(z;,r;)} such that
r; < 0. Define the s-dimensional Hausdorff measure H*® by

H(E) = lim H3(E).

The Hausdorff Dimension of E, dimy(F), is the unique number sy such that H*(E) = oo if
s<so and H*(E) =0 if s> s¢.

We can now ask the following interesting question.
Question 3. How large must dimy(E) be to ensure that |[A(E)| > 07

Kenneth Falconer constructed compact sets F C R? with dimy(E) < d/2 and |A(E)| =0.
He also showed the first nontrivial threshold dimy(E) > (d+1)/2], which ensures |A(E)| > 0
[2]. The correct threshold thus lies in [d/2,(d + 1)/2) and the conjecture is d/2. The cutting
edge is still far from the conjectured threshold. Below is a summary of progress to date.

d=2, |3
d=3, [4]
d > 4,d even, [5]°

(8 +1+taan d=4.dodd, [6]

Steps have been taken in understanding more complex distance configurations in E. Let G
be a graph and define the G -distance configuration of E by

Ag(E) = {(|z: — $j|)(i7j)€g(g) sz, .. ’le(G)I) c E|V(G)\}‘

Here V(G) and £(G) are the vertices and edges of G respectively. A. Iosevich and K. Taylor [7]
showed that for a tree T', Ap(E) contains an entire interval when E C R? has dimy(E) >
(d+1)/2. At the other extreme, A. Greenleaf, A. Iosevich, B. Liu and E. Palsson [8] showed using
a group theoretic approach that if G is the complete graph on k+ 1 vertices (the k-simplex),
then |Ag(F)| >0 as long as dimy(E) > (dk+1)/(k+1).

Distance is certainly not the only quantity that can be associated with two points, and
progress has been made in generalizing the Falconer problem in this direction too. A. Greenleaf,
A. Tosevich, and K. Taylor [9] considered more general ® -configurations for a class of & :
RYxR? — R¥ . They showed that the associated configuration set Ag(E) = {®(x,y) : z,y € E}
has nonempty interior under certain lower bound assumptions on dimy(F) and regularity of
the family of generalized Radon transforms associated with ®. To avoid some of the Fourier
integral operator theory needed to handle a general class of ® and because of the nice geometric
interpretation, we specialize to dot product in R? i.e.
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Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2022, Vol. 139, Ne2

13



Trees of Dot Products in Thin Subsets of R?

Define A(E) = {x-y:z,y € E}. The lower bounds on Hausdorff dimension for dot products
and similar configurations as in 9] are far less developed than for distances. The best bound so
far to ensure that |A(E)| >0 is dimy(F) > (d+ 1)/2. Compare this with the table above for
distances.

In this work we make progress on understanding 7' -dot-product configurations, for T' a tree
with some k edges. Define

AT(E> = {(l‘z . xj)(i,j)GE(T) : (l‘l, e ,.%'k+1) S EkJrl}.

Before arriving at our results, we need the following machinery. It is well known that if E ¢ R¢
has dimy(F) > a, there is a number s € (o, dimy(E)) and finite Borel measure supported on
E such that

w(B(x,r)) S 7°,
for each x € R? and r > 0. We call such a p a Frostman measure with exponent s. In light

of this, we have the following results.

Theorem 1. Let T be a tree with k edges and E C R? compact with dimy(E) > (d+1)/2.
Then for every Frostman measure with exponent s > (d + 1)/2 supported on E, there is a
constant C' > 0 independent of € such that

PP {1y apg) € BFT T —e < ayxy <t e, (4,5) € E(T)}) < CeF, (1)
for every collection {t7} and € > 0.

In the proof of Theorem 1, we follow a scheme developed by A. losevich et. al. [10] to bootstrap
a Sobolev operator bound to a L?() — L?(x) bound. This gives us a mechanism to ‘rip’ leaves
from a tree until nothing is left. We remark that in the case of chain configurations

{(z1 - xo, 20 - 23, ..., Tk - Thy1) : (T1,...,Tk11) € Ek},

Theorem 1 is a special case of work done by A. Tosevich, K. Taylor, and I. Uriarte-Tuero [15].

We would also like to find a lower bound for a quantity like (1). The idea will be to embed
T in a symmetric tree cover o(T) which can be ‘folded’ down to a single edge, at which point
we can apply a result in [9] to the single edge. We define o(7T') in Section 4.

Theorem 2. Let T be a tree with k edges and E C R? compact with dimy(E) > (d+1)/2.
For every Frostman measure with exponent s > (d+ 1)/2 supported on E, there is a constant
c > 0 independent of € and open interval I such that for each t € I and € > 0,

Y {(z, e ape) € BFY it —e < aioxy <t €, (6,5) € E(a(T))}) > et

From Theorem 1 we can deduce that any tree T is embedded in E with many different
edge-wise dot products. We mean this in the following sense.

Corollary 1. Let E C R? be compact with dimyg(FE) > (d+1)/2. Then |[Ar(E)| >0.

It is also interesting to pinpoint which embeddings of a graph are contained in E and how
many such embeddings there are. For the distance variant of this question see [7]. We define
the set of embeddings of 7' in E with dot-product vector ¢ = (t¥) as

Ty(E) = {(21,...,2541) € E¥ a2y =19 (i,5) € £(T)}.

When t is a scalar, we take all the #* =t in (1). We can use Theorem 2 to show that there
are embeddings with equal edge value.

Corollary 2. Let £ C R? be compact with dimy(FE) > (d + 1)/2. Then there is an open
interval I such that for each ¢t € I, T;(E) is nonempty.

Using Theorem 1, we can show that when E is Ahlfors-David regular, there cannot be too
many embeddings of any given type ¢ = (t/) . Before getting to the corollary, we define Ahlfors-
David regular.
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Definition 3. A set E C R? is Ahlfors-David s-regular if it is closed and if there exists a Borel
measure u supported on E and a constant C such that

C~ % < w(B(x,r)) < Crf,
forall z€ E, 0 <r <diam(F), r < oo.

Note that when working on compact sets F, such measures p are finite. We prove the
following.

Corollary 3. Let £ C R? be compact Ahlfors-David s-regular, for some s > (d+1)/2. Then
for any t = (tV),
dimm(T1(E)) < (k+1)s — k.

As we explained above, Minkowski dimension is a weaker notion than Hausdorff dimension
when working with lower bounds. However for upper bounds, Minkowski dimension is the
stronger statement. In summary

dimy (A) < dimpg(A) < dimpag(A).

Corollary 3 should not be too surprising. Say we were working on R? instead of E. Then we
have %k equations x;-x; = t' and k+1 variables x1,...,7541. So the regular value theorem
tells us that T;(E) has dimension 1. In our case E has dimension s, so one can think of
Ti(E) as s(k+ 1) dimensions of freedom cut by k equations, giving (k + 1)s — k remaining
dimensions.

2. INITIAL REDUCTIONS

Let E C R? have dimy(F) > (d+1)/2. Then there is a Frostman measure p with exponent
s supported on E, for some s € ((d+1)/2,dimy(F)) .

We can reduce the problem to when E C [¢,1]¢ for a fixed constant c. To see this, cut R?
into dyadic annuli {2/ < |z| < 2/*1'}. p is positive on at least one of these, and by rescaling
we can assume it is {1/2 < |z| < 1}. If we cover {1/2 < |z| <1} with balls of radius 1/100,
o is again positive on at least one of these. Notice that for 6 € SO(2), (20)-(yf) = z-y. Thus
rotating the measure p does not affect the quantity in Theorem 1 or 2, so we can assume this
ball is contained in [c,1]¢ for a fixed constant c¢. Then we simply restrict g to this ball and
renormalize.

3. PROOF OF THEOREM 1 AND COROLLARIES 1 AND 3

3.1. Proof of Theorem 1. We define a quantity Vr; which is approximately the quantity
in Theorem 1. Let p be a smooth bump function on R supported around 0 and set p¢(:) =

e !p(e7!.). Then define

- [+ f( I

The idea is to rip a leaf edge from T one at a time until the tree is empty. One needs a
corresponding mechanism that operators on pr’t(,u,) executing this plan, which is what we
develop below. This is in the same spirit as M. Bennet, A. losevich, and K. Taylor’s work on
chain configurations [11]. More concretely, we need to show that Vit(,u) < C' independently of
€ and t. We recast this problem in terms of operators for which we have nice results. Define
R to be the operator with kernel p(z -y —t), that is

/f (z-y—t)dy.

P (i) — tij)> dp(@r) - - dp(wp41).
(4,5)€&E(T

We also define
Ri(fn)(@) = [ £ (@ -y - duly).
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! Then we can cast Vit(u) in a way conducive to ‘ripping off” edges.

Definition 4. For T a tree with a single vertex, define f7 =1. Let T be a tree with £ > 1
edges and say y is a leaf with edge (z,y). Say (z,y) has corresponding dot product ¢ .
Remove the leaf edge from T to obtain a subtree T”. Define

fr = Ri(f ).

One can think of f$(z) as T pinned at z. Then integrating over the pinned point gives the
entirety of Vi, (u). That is

Veu) = [ Fr@)du(a).
By Cauchy-Schwarz and as p is a probability measure,

Vi) = 1l oy < WF7lle -
We use the following operator norm to run the induction.

Theorem 3. If u is a Frostman measure with exponent s > (d+1)/2 and with support as was
established in Section 2, RS is a bounded linear operator L?(p) — L?(u) with

IR ) 220y S 11l
independently of € >0 and for t =~ 1.

The proof is left to Section 5.1. By our initial reduction g has support in [c,1]?, s0 z-y ~ 1
on supp p . Inlight of Definition 4, ff = Ry (ff/). By Theorem ?? and the inductive hypothesis,

17 2y = IRE (F1)l p20
Sl 2
<1

independently of € >0 and t = (tV). O

3.2. Proof of Corollary 1. Consider any cover of Ap(E) by products of intervals
AMEYcl I ¢ — et +eo)
£ (i,j)e€(T)
We have
EFMt = | A1, app1) € BN iy =19 (i, 5) € E(T)}
teAr(E)
- U{(xlv cee ,.Z‘k+1) € Ek+1 : tzj —€ < T T; < tzj + €, (27]) € 5(T)}7
¢

so by Theorem 1,

1= IukJrl (Ek+1)

<3S {(n, - ap) € BMTU ot — e <@y <t + e, (4,5 € E(T))})
y4

< Z Cey.
l
Thus Y, e, > 1/C . This holds for any choice of covering so |Ar(E)| >1/C > 0. O

IThis operator is known as the Radon Transform. See Section 5.1 for more details or [12] for an in-depth
review.
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3.3. Proof of Corollary 3. In Definition 1, we can replace N(A,e) with P(A,e). Here
P(A,¢) is the packing number, the greatest number of disjoint €-balls with centers in A . This
follows from the inequality

N(A,2¢) < P(A,e) < N(A,e/2),

which one can find in a wonderful book by P. Mattila [13|. Consider such a packing {B(z;,€)}
of Ty(E) of size P(T3(E),¢€). Since the centers of the balls B(x;,¢) are in Ti(E),

U B(x;,¢) C (Ty(E))".

2 For any (1,...,%541) € EFTI N (Ty(E))¢, there are af,...,2}, € E such that 2} x =t
for (i,j) € E(T) and |z; — )] < €. Thus
i -y — 1] < [aillay — 2] + [af| |2 — 2]
< 2,
giving
EMT N (TU(E)) C {(w1, . apq1) € EMTL 0t — 2¢ <y -y < #99 4 2¢, (4, §) € E(T)}.

We can conclude with Theorem 1 that

3 (VL)

< uk+1(Ek+1 N (Tt(E))e)

< P21, wpgr) € BFTY T 2e < - wy < 1Y 4 26, (4,5) € E(T)})

< Ce*.
Since p(B(z,r)) > C'~'r*, we get p*+H(B(x,r)) > C'~1r*+1s - We conclude from the above
calculation that

C' ks p(Ty(E), €) < Cev,
S0
P(Ty(E),e) < C"e*~,

We obtain

—— . log(P(T3(E),€))
s (TE) = limep = 11 g

<(k+1)s—k.

4. PROOF OF THEOREM 2 AND COROLLARY 2

In this section we consider Vr; with ¢ a scalar as

Via(p) = // < H pe(x; - xj — t)) dp(zy) - - dp(zps).
(T)

(ij)eE
Our lower bound comes from repeated use of Holder’s inequality, which ‘folds’ the graph onto

itself until reaching a single edge. T itself is not guaranteed to enjoy enough symmetry for such
an argument to work out, so we embed 7' in a larger graph o(7") which is highly symmetric.

Definition 5 (Symmetric Tree Covers). Let T be a tree with at least £ > 1 edges. We define
the symmetric tree cover o(T") of T as follows. If £k =1 then o(7) = T'. Otherwise let u
be a non-leaf vertex of T'. Let T; be the tree obtained by collapsing every neighbor of u to a
single vertex and reattaching u to this vertex. Finally join deg(u) copies of o(Ty) at u and
call the resulting tree o(7T).

2 A€ is the e-neighborhood of A defined as A = {z € R?: 3y € A, |z — y| < ¢} .
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o(T):
X1

FiGURE 1 — Inductive construction of o(T).
%{ -
——
>, I
Y o
——
>
T, l ¢ I

g

I

FicURE 2 — Unwrapping the induction for a concrete tree. Downward arrows are the construction of
the T, ’s as in Definition 5. Rightward arrows are the o operation. Upward arrows are the joining
operation as in the last step of Definition 5. Edges in the upper left graph are tracked in red.

A diagram of the induction is provided in Figure 1. A concrete example is in Figure 2.
Note that the symmetric tree covering can depend on the choice of pivot at each stage, but
we have no need for uniqueness. It is not difficult to establish the following properties of o (7).
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Lemma 1. T C o(T) and o(T) is finite.

We proceed by induction. If T is a single edge we are done. Suppose that T has k > 2
edges and T" C o(T") for any tree T’ on fewer than k edges. T, contains k —d(u)+1 edges,
and 6(u) > 1 as we can take u to be a non-leaf vertex. Thus T, C o(T},). o(T,) contains a
copy of T, for each vertex, so it contains each connected component of 7'\ u connected to wu,
giving T'C o(T'). Also o(T) is finite as o(T},) is by induction finite. O

The base case when T has a single edge is contained in a paper by A. Greenleaf, A. losevich,
and K. Taylor [9]. We give the theorem in our notation below, letting e denote an edge.

Theorem 4 (Greenleaf-Tosevich-Taylor (9]). Let p have exponent s > (d+1)/2. Then there
18 an open interval I such that

Ver = (Rip, ) 21
independently of €e >0 and t € 1.

Consider when T has k > 2 edges and let T;, be as in Definition 5. Note that the disjoint
copies of T, are common only in u. We have

deg(u)
o(T) ¢ /(/ / H P(xz"fﬂj—t)du(l“l)'“du(xk')> g dp(u),

(i,5)€€(a

where we are abusing notation and lettlng u represent the vertex as embedded in F and as
in the abstract graph 7. Here x1,...,xp are the vertices in T; excluding u. Since p is a
probability measure, Holder gives

deg(u
I # o —tdu(ar) - duew) g()dum
I\

7.7 65 T‘U

deg(u)
</ [/ H p<xi~xj—t>du<x1>---du<xk/>du<u>> g

(i,5)€€(c
= (Ve(ruy ()5 > 1,

where the last line is by induction. U

4.1. Proof of Corollary 2. Set
K, ={(x1,...,x141) € EFtL 4 I/n<wxi-xz; <t+1/n,(i,75) € E(T)}.
Then the K, are nested, non-increasing, and

() Kn = o(T)(E).

n>1

Consider ®(z1,...,%r41) = (7 - Tj) (i j)ep(T) » Which is continuous as a function RF+1 — RF,

Then K, = EF'N &~ !([t — 1/n,t + 1/n]) is compact, being the intersection of a compact

set and a closed set. By Theorem 2 u(K,) > ¢/n* > 0, so K, is nonempty. By Cantor’s

intersection theorem o(7);(E) is thus nonempty. By the inclusion of T in o(T), Ti(E) is

nonempty. U
5. APPENDIX

5.1. The Radon Transform. As alluded to in Section 3, we have a family of Radon transforms
R{ given by

/ fW)p (@ -y —t)dy.
When g is a Borel measure we write
Ri(fn)(@) = [ £ (@ -y - )du(y).
Bulletin of L.N. Gumilyov ENU. Mathematics. Computer science. Mechanics series, 2022, Vol. 139, Ne2
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The following is a well-known mapping property of R . See [17] for the original argument. For
a source with more background, see Stein and Shakarchi’s book on functional analysis [12].

Theorem 5. RS is a bounded linear operator L?(R%) — L%dil)/Q(Rd) with
€
||Rtf||L(2d_1)/2(Rd) S ||f||L2(Rd)
independently of € >0 and for t =~ 1.

Recall that the Sobolev space L2 (RY) is the function space equipped with the norm

N 1/2
£l3eey = ( [+ 16D 1T Pdg)

We bootstrap off this result to show L?(u) — L?(u) boundedness of R§. This was done for
convolution operators in [10], but the method also applies (as the authors of [10] remark) to
Radon-type operators. We give the proof below.

Theorem A. If p is a Frostman measure with exponent s > (d 4+ 1)/2 and with support
as was established in Section 2, R is a bounded linear operator L?(u) ~ L?(p) with

HRi(fM)Hm(u) S Hf”L?(,u)

independently of € >0 and for t =~ 1.
P r o o f. By polarization, it suffices to show that for any H9HL2(V) <1,

[(Re(F1)y gl S Nl 2y 91l 22 )

independently of ¢ > 0 and t ~ 1. To proceed, we localize to dyadic frequencies. We will see
that the large frequencies are the only ones that give us any trouble, so we consider a partition
of unity

> x277) +x08) =1,

Jj=1
where x is supported in the annulus {£ : 1/4 < || < 1}. One can construct such functions
by considering a C° function ¢ equal to 1 when |{] > 1 and to 0 when |z| < 1/2, and
letting x(§) = #(28) — ¢(§). The function xo is supported in the ball {£ : || < 1} and is
also smooth, since Ej>1 x(277-) being the sum of only a finite number of smooth functions in
a neighborhood of any point is smooth. Now we can define the Littlewood-Paley projection by
the relation

Pif(€) = J(x(277¢)
for j > 1, and
Pof(&) = f(€)xo(§)-
Then f =3 ,50P;f. Applying the Littlewood-Paley decomposition to fu and gu, we obtain

(Ri(Fu), gm| < D KRE(Pi(f), Pr(gp))l (2)
J k>0
= Y UR{P(fw), Pelgu))l+ > KRE(Pi(fu), Pelgm)l,  (3)
li—k|<M li—k|>M

where M is a constant to be chosen later. We handle the |j —k| < M portion first. We need
a mechanism to transfer an L%d+1)/2 bound to a L?(u) one. We need the following generic test

for L? boundedness. See [14] Lemma 7.5.

Theorem 6 (Schur’s test). Let (X,u) and (Y,v) be measure spaces, and let K(x,y) be a
measurable function on X XY with

[ VK@ pldu(@) < A for each y.
X

A |K (z,y)|dv(z) < B for each x.
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Define Ti f(z) = [ K(x,y)f(y)dv(y) . Then there is an estimate
1Tk fll 20y < VABIIfll 2
Now we can continue to prove the following.
Lemma 2. If u is a Frostman measure with exponent s we have the estimate
17l 2gezany € 21l

Lemma 2 is a special case of a result in [16]. A straightforward proof of Lemma 2 is contained
in [14], but we give it here with all the details.

Proof Let ¢ be an even Schwarz function which is > 1 on the unit ball and whose
Fourier transform has compact support. It is not difficult to see that such a function exists. For
example, let f be a real-valued, nonnegative, symmetric Cgo(Rd) function such as

_ fexp(—1p) 2 <1
fle) = {0 otherwise
Define g := F~!(f). Then
9(0) = [ @)z >0,

and by rescaling f we can assume ¢(0) > 2. ¢ is certainly continuous, so for some § > 0,
g>1 on {|z| <4d}. Finally define ¢(x) = ¢(dz) which is as desired.
Now we define ¢;(-) = ¢(277+), which is at least 1 on {|¢| < 2/}. Using this and Plancherel,

”fﬂ||L2(\§|§2j) < ||¢ijHL2
= [l * (£l -
This last line is the L? norm of the function
v [ 2952 @ = ) Fw)duly).
We have
[ 12762 @ = y)lda = 13l

by a change of variables. gg has compact support in some fixed ball M , so

[ 12962 @ = y)lan) =2 [ 162 (@~ y)ldu(y)

lz—y|<M2-J
< ild=s),
The last line follows from the fact that u(B(x,r)) S r°. Now we can apply Schur’s test with
the kernel K (z,y) = 279¢(2/(x — y)) and obtain

165 % (Fi)ll 2 S 27921 £l 2 -
Returning to the proof of Theorem A, Plancherel and Cauchy-Schwarz give that the |j—k| <
M portion of (3) is dominated by
S RGP (F)ll gty | P (g
li—kl<M

We take advantage of Theorem 5, the L?(R%) — L% 1) /Q(Rd) boundedness of the Radon
transform Rj. We have

S — 1/2
IRECP, (P ety 27002 ([ (L 1o2) 2 RE(Py (1) () P
— 2 MNP R (P ()

(d-1)/2
< 27KV Pi(f i) 2
< 9 k(d-1)/29j(d=5)/2
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Thus we are left with

S IREB i) 2y [ Pelgm) 2 S 3 27K D 29i(d=)/29k(d=)/2,
li—k|<M li—kI<M

which is summable if s > (d+1)/2.

We still need to handle the |j —k| > M portion of (3). This diagonalization can be executed
with the following Lemma.

Lemma 3. For any positive integer N , there is a K such that if |j — k| > K,
[(REP;(F1)s Pelgm)| Sv 27V OB £ oy 191l 12
independently of € >0 and for t = 1.
We give the proof below. With Lemma 3 we see that

S URS P (1), Pelgi) SN I lpagollall oy D 27 VmexGh),

li—k|>M lj—k|>M

This is summable even when N = 1. O
Proof. [Proof of Lemma 3] We will argue by nonstationary phase. By the support prop-
erties of p, we can insert a bump function 7 with support in [, l]d. By Fourier inversion on

Pj(fu) and p°,
Ri(P (1)) = [ B(fn)n(e,p)(a -y~ Dy
— jff .327ri(yf-l-s(az:-y—lt))Ijj.‘(_JL“\M)(é’)n(x7 y)ﬁ(€8)d§d$dy

Taking the Fourier transform of R:(P;(fp)),

Ri(Py(f)(m) = [[[ [ s B ) ©ne. v)ptes) dsdsdy.

Finally Plancherel gives
(Ri(Pi(f1), Pu(gm)) fHP F1)(€) Pilgm) (r)ples)dédrds,

where 4
Li(€:78) = X3(Exu(r) [ [ 2m e eslev =Dy y)dardy.

Inserting the smooth cutoffs from the definition of the Littlewood-Paley decomposition is justified
as xj ~ X? . For convenience we write

\Ifgms(x,y) =y-&—x-7+s(x-y—t).
We would be done if we could show that
Lk (€,7,8)] S (1 + |s]) 22~ Nmax(Gk), (1)

p is Schwarz since it is even C§°, so p is Schwarz. This gives |p(es)] < 1. It would follow
from |p(es| <1 and (4) that

(R (Pi(f1m)), Pelam)| < [[[ 1P(F)©1 Pilgi) (7)] [7(es)|dsdédr
S 27 NGB ({1 1P(£10)(€) || Pelgm)(7)|(1 + |s]) ~2dsdgdr

= 2N [\P(f)(©lde [ 1Pulgn)(r)ldr [(1+1s)ds.
The integral in s is finite. By Cauchy-Schwarz and Lemma 2, the integrals in £ and 7 are

dominated by 274/22i(d=s)/2 and 2kd/29k(d=5)/2 pegpectively. Thus

[(RE(P;(f1)), Prlgp))| S 20 N H2ds)maxGk),
so by choosing a large enough N we are done.
Now we prove (4). We have
Vx‘ljfﬂ',s = =T+ sy
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and
Vy¥ers =&+ sz
Assume without loss of generality that j > k+ K, so || < |7]|. When |s| < |7],
IVaWersl 2 I = s 2 |71,
Where we used that 1 has fixed compact support. If |s| > |7],
=71 Z Isl,
where we use that 7 is not supported near the origin. If |s| ~ |7,
IVyWersl 2 [s| = €]
~ || - [

Z Il

In any case |VW¢ | 2 max(|7|,|s]).
It is immediate that all the partials of W, ., are bounded above by a constant multiple of
max(|7|, |s|) . Consider the differential operator
= LM Vv,
271 V¢ ;|2

2miVe,rs) =

for which e2™#¥ers is clearly an eigenvalue. Therefore LY (e e?™Wers for any positive

integer N . Thus
Li(§,ms) = [[ LN (@™ ereyndy/da = [[ ™ ere (LYY (n)dyda.

The transpose L! of L is given by
1 Ve,
A )

2mi -\ [Vl
1 v A
- <Vf . {,7,52 o f . 577',52)
271 |V\Ij£,7‘,8‘ |V\Ij§ﬂ',3‘

and taking the modulus,
LA ()| S [Vl max(|7], |s)) ! + |n| max(|7], |s|)
We can continue integrating by parts up to any positive N’ and obtain a bound
(LN ()] Swve max(|7], [s)) ™Y Y7 [9%n].
o] <N’
Taking the modulus of I;,(§,7,s), we obtain
(&7, 8)] S max(|7], s) N [{ 37 [9%nldy'de Sy max(|7], [s]) N
|a|] <N’
since n is Schwarz. Since |7| > 1,
|1 (&,7,9)| S max(|7], [s]) =% max(|7], |s|) N+
S(I+]s |)72\T|7N/+2
(1 + | |) —(N’+2) max(j, k)

Taking N’ large enough we are done.
With Lemma 3 proved, we are done.

00O
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A. Hanxxkumsane
Kanugpoprusa ynusepcumemsi, Jloc-Awndorcenec, Kanrupoprusa, 90095, AKIII

RY¢ >KUBIHBIHBIH, XKiHIIIKE >XUBIHIIAJAPBIHAAFEI TYypa KebeiiTiHaiIepain aramTapbl

Amnnoranust: A.Mocesuu nen K.Teitop xaycaop esmemi (d 4 1)/2 -nen apTeik 60siaTbiH RY kenicririnig KoMmaxT
2KUBIHIIAJIAPBl AllbIK MHTEPBAJIA TECIKTI aramrrapibl KaMTUTBIHIBIFBIH JRjesered. MakaJjiajga OChl eJIeMiep YIIiH
apaKalIbIKTHIKTHI Typa KOOeHTIH/Iire aJIMACThIPY »KaFAalbIHIa YKCAC HOTHKeep faeiaer . CoHbIMEH KaTap, KAMThLIFaH
Typa KeGeHTIH/II aranibIHbIH TecikTepi oH Jleber esmemMal KublHga yCeTeMIiK eremi, aa Anbdopc-/9BUATHIH perysisipibIk,
JKUBIHBI YIIIH 6eplireH TeCIKTI aramrrap CaHbl PEryJIsipibIK, MoHI »KallyIibl TeOpEeMaMeH CofKeC KeJlesi.

Tyitin ce3gep: AKbIpabl-HYKTeN KoHMUIypanusaiap, KajalblIaHran PajioH TypJeHAIpYJIepiHiy, peryJisipJibFbl,
reoOMeTPHSIIBbIK, rpadrap.

A. Hagxumszane
Kanugoprutickut ynusepcumem, Jloc-Andocenec, Kanugpoprus, 90095, CIIA

JlepeBbsi IPSAMbBIX HIPOU3BEAEHUIN B TOHKUX IOJMHOXECTBAaX R4

Annorarus: A.Vocesnd u K. Teiiop mokasa/m, 9T0 KOMIAKTHbIE TOAMHOKecTBa R? ¢ XaycmopdoBoii pasMepHOCTHIO
Gosbuie (d + 1)/2 comepxKar JepeBbsi ¢ HPOIYCKaMH B OTKPBITOM MHTEpBaJie. B crarbe IIPU TOM *Ke pasMepHOM II0pore
JOKa3aH AHAJIOTUYHBIA PE3yJIbTAT C 3aMEHON PAaCCTOSIHUSI Ha IpsIMble POU3BEJEHMs. TakKKe IMOJIyYEeHO, UTO IIPOILYCKH
BJIOYKEHHBIX JIEPEBBLEB IPSIMOIO IIPOU3BEMEHUsI MPEODIafal0T BO MHOXKECTBE C IOJIOXKHUTEIbHOI Mepoit JleGera, a s
peryJisipHbIX MHOXKeCTB Auibdopca-/I3Buga, KOMMYIECTBO AEPEBLEB C 3aJAHHBLIMU IIPOIyCKAMHI COBIIAJAET C TEOPEMOH O
PeryJisipHOM 3HAYEHUU.

KuroueBbie ciioBa: KoHeuHO-TOUeUYHBIE KOHMUIypalMi, PperyJjsspHOCTbL ODOOIIEHHbIX Ipeobpa3oBanuii Panona,

reoMeTpuYecKre rpadsl.
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