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1. Introduction

The theme of this work can be summarized in the following question: how large must a subset
of Rd be for it to contain certain geometric structures? Though in our work we focus on dot
products, the the study of such questions was first motivated by distances.

If E is a set in Rd , define its distance set by ∆(E) = {|x − y| : x, y ∈ E} . When E ⊂ R2

is finite, the study of the relationship between |∆(E)| and |E| is the celebrated Erdős distance
problem. The conjecture is |∆(E)| ≥ |E|/ log |E| , which was met up to a square root with Guth
and Katz’s bound of |∆(E)| ≥ |E|/

È
log |E| [1]. One could ask what happens when E ⊂ Rd

is infinite. A first notion of size that one learns in real analysis is the Lebesgue measure, which
we will denote from here onward by | · | . The following question could be posed.

Question 1. If |E| > 0 , how large must ∆(E) be?

A theorem of Steinhaus says that when |E| > 0 , E−E contains an open set around 0, so in
particular ∆(E) contains an open set. This is as large of a set in Rd that we could ever hope
for, so we need a more refined notion of the size of infinite sets. Another notion of size that one
might encounter is the Minkowski dimension.

Definition 1 (Minkowski Dimension). Let N(E, ε) be the number of balls of radius ε > 0
required to cover the set E . Then the lower Minkowski dimension of E is given by

dimM(E) = lim inf
ε→0

logN(E, ε)

log(1/ε)
,

and the upper Minkowski dimension is

dimM(E) = lim sup
ε→0

logN(E, ε)

log(1/ε)
.

We can pose the following possibly more refined question.

Question 2. How large does dimM(E) have to be for |∆(E)| > 0 ?
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Unfortunately this question is still uninteresting. There exist sets which have “full” Minkowski
dimension, in the sense that the lower Minkowski dimension is as large as it can be, yet their
distance sets have measure 0. In fact, they can be merely countable! Consider

E = Qd ∩ [0, 1]d.

By the density of the rationals, it takes (up to a constant) 1/εd balls of radius ε to cover E ,
regardless of how small we take ε . Thus dimM(E) = d , the largest possible dimension in Rd .
However ∆(E) is the image of a countable set, so it is itself countable.

The deficiency in Minkowski dimension is that our covers can consist only of balls of the same
size. However this does make computations with Minkowski dimension easier. The Hausdorff
dimension does not have this issue, but it is often more difficult to compute.

Definition 2 (Hausdorff Dimension). Let

Hsδ(E) = inf
X
j

rsj ,

where the infimum is taken over all countable coverings of E by balls {B(xi, ri)} such that
ri < δ . Define the s -dimensional Hausdorff measure Hs by

Hs(E) = lim
δ→0
Hsδ(E).

The Hausdorff Dimension of E , dimH(E) , is the unique number s0 such that Hs(E) =∞ if
s < s0 and Hs(E) = 0 if s > s0 .

We can now ask the following interesting question.

Question 3. How large must dimH(E) be to ensure that |∆(E)| > 0 ?

Kenneth Falconer constructed compact sets E ⊂ Rd with dimH(E) < d/2 and |∆(E)| = 0 .
He also showed the first nontrivial threshold dimH(E) > (d+ 1)/2] , which ensures |∆(E)| > 0
[2]. The correct threshold thus lies in [d/2, (d+ 1)/2) and the conjecture is d/2 . The cutting
edge is still far from the conjectured threshold. Below is a summary of progress to date.8>>><>>>:

5
4 , d = 2, [3]
9
5 , d = 3, [4]
d
2 + 1

4 d ≥ 4, d even, [5]
d
2 + 1

4 + 1
4(d−1) d ≥ 4, d odd, [6]

.

Steps have been taken in understanding more complex distance configurations in E . Let G
be a graph and define the G -distance configuration of E by

∆G(E) = {(|xi − xj |)(i,j)∈E(G) : (x1, . . . , x|V(G)|) ∈ E|V(G)|}.

Here V(G) and E(G) are the vertices and edges of G respectively. A. Iosevich and K. Taylor [7]
showed that for a tree T , ∆T (E) contains an entire interval when E ⊂ Rd has dimH(E) >
(d+1)/2 . At the other extreme, A. Greenleaf, A. Iosevich, B. Liu and E. Palsson [8] showed using
a group theoretic approach that if G is the complete graph on k+ 1 vertices (the k -simplex),
then |∆G(E)| > 0 as long as dimH(E) > (dk + 1)/(k + 1) .

Distance is certainly not the only quantity that can be associated with two points, and
progress has been made in generalizing the Falconer problem in this direction too. A. Greenleaf,
A. Iosevich, and K. Taylor [9] considered more general Φ -configurations for a class of Φ :
Rd×Rd → Rk . They showed that the associated configuration set ∆Φ(E) = {Φ(x, y) : x, y ∈ E}
has nonempty interior under certain lower bound assumptions on dimH(E) and regularity of
the family of generalized Radon transforms associated with Φ . To avoid some of the Fourier
integral operator theory needed to handle a general class of Φ and because of the nice geometric
interpretation, we specialize to dot product in Rd , i.e.

Φ(x, y) = x · y = x1y1 + · · ·xdyd.
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Define Λ(E) = {x · y : x, y ∈ E} . The lower bounds on Hausdorff dimension for dot products
and similar configurations as in [9] are far less developed than for distances. The best bound so
far to ensure that |Λ(E)| > 0 is dimH(E) > (d+ 1)/2 . Compare this with the table above for
distances.

In this work we make progress on understanding T -dot-product configurations, for T a tree
with some k edges. Define

ΛT (E) = {(xi · xj)(i,j)∈E(T ) : (x1, . . . , xk+1) ∈ Ek+1}.

Before arriving at our results, we need the following machinery. It is well known that if E ⊂ Rd
has dimH(E) > α , there is a number s ∈ (α,dimH(E)) and finite Borel measure supported on
E such that

µ(B(x, r)) . rs,

for each x ∈ Rd and r > 0 . We call such a µ a Frostman measure with exponent s . In light
of this, we have the following results.

Theorem 1. Let T be a tree with k edges and E ⊂ Rd compact with dimH(E) > (d+ 1)/2 .
Then for every Frostman measure with exponent s > (d + 1)/2 supported on E , there is a
constant C > 0 independent of ε such that

µk+1({(x1, . . . , xk+1) ∈ Ek+1 : tij − ε < xi · xj < tij + ε, (i, j) ∈ E(T )}) < Cεk, (1)

for every collection {tij} and ε > 0 .

In the proof of Theorem 1, we follow a scheme developed by A. Iosevich et. al. [10] to bootstrap
a Sobolev operator bound to a L2(µ)→ L2(µ) bound. This gives us a mechanism to ‘rip’ leaves
from a tree until nothing is left. We remark that in the case of chain configurations

{(x1 · x2, x2 · x3, . . . , xk · xk+1) : (x1, . . . , xk+1) ∈ Ek},

Theorem 1 is a special case of work done by A. Iosevich, K. Taylor, and I. Uriarte-Tuero [15].
We would also like to find a lower bound for a quantity like (1). The idea will be to embed

T in a symmetric tree cover σ(T ) which can be ‘folded’ down to a single edge, at which point
we can apply a result in [9] to the single edge. We define σ(T ) in Section 4.

Theorem 2. Let T be a tree with k edges and E ⊂ Rd compact with dimH(E) > (d+ 1)/2 .
For every Frostman measure with exponent s > (d+ 1)/2 supported on E , there is a constant
c > 0 independent of ε and open interval I such that for each t ∈ I and ε > 0 ,

µk+1({(x1, . . . , xk+1) ∈ Ek+1 : t− ε < xi · xj < t+ ε, (i, j) ∈ E(σ(T ))}) > cεk.

From Theorem 1 we can deduce that any tree T is embedded in E with many different
edge-wise dot products. We mean this in the following sense.

Corollary 1. Let E ⊂ Rd be compact with dimH(E) > (d+ 1)/2 . Then |ΛT (E)| > 0 .

It is also interesting to pinpoint which embeddings of a graph are contained in E and how
many such embeddings there are. For the distance variant of this question see [7]. We define
the set of embeddings of T in E with dot-product vector t = (tij) as

Tt(E) = {(x1, . . . , xk+1) ∈ Ek+1 : xi · xj = tij , (i, j) ∈ E(T )}.

When t is a scalar, we take all the tij = t in (1). We can use Theorem 2 to show that there
are embeddings with equal edge value.

Corollary 2. Let E ⊂ Rd be compact with dimH(E) > (d + 1)/2 . Then there is an open
interval I such that for each t ∈ I , Tt(E) is nonempty.

Using Theorem 1, we can show that when E is Ahlfors-David regular, there cannot be too
many embeddings of any given type t = (tij) . Before getting to the corollary, we define Ahlfors-
David regular.
Л.Н. Гумилев атындағы ЕҰУ Хабаршысы. Математика. Компьютерлiк ғылымдар. Механика, 2022, Том 139, №2
Вестник ЕНУ им. Л.Н. Гумилева. Математика. Компьютерные науки. Механика, 2022, Том 139, №2

14



A. Nadjimzadah

Definition 3. A set E ⊂ Rd is Ahlfors-David s -regular if it is closed and if there exists a Borel
measure µ supported on E and a constant C such that

C−1rs ≤ µ(B(x, r)) ≤ Crs,

for all x ∈ E , 0 < r ≤ diam(E) , r <∞ .

Note that when working on compact sets E , such measures µ are finite. We prove the
following.

Corollary 3. Let E ⊂ Rd be compact Ahlfors-David s -regular, for some s > (d+ 1)/2 . Then
for any t = (tij) ,

dimM(Tt(E)) ≤ (k + 1)s− k.

As we explained above, Minkowski dimension is a weaker notion than Hausdorff dimension
when working with lower bounds. However for upper bounds, Minkowski dimension is the
stronger statement. In summary

dimH(A) ≤ dimM(A) ≤ dimM(A).

Corollary 3 should not be too surprising. Say we were working on Rd instead of E . Then we
have k equations xi · xj = tij and k + 1 variables x1, . . . , xk+1 . So the regular value theorem
tells us that Tt(E) has dimension 1 . In our case E has dimension s , so one can think of
Tt(E) as s(k + 1) dimensions of freedom cut by k equations, giving (k + 1)s − k remaining
dimensions.

2. Initial Reductions

Let E ⊂ Rd have dimH(E) > (d+1)/2 . Then there is a Frostman measure µ with exponent
s supported on E , for some s ∈ ((d+ 1)/2,dimH(E)) .

We can reduce the problem to when E ⊂ [c, 1]d for a fixed constant c . To see this, cut Rd
into dyadic annuli {2j ≤ |x| ≤ 2j+1} . µ is positive on at least one of these, and by rescaling
we can assume it is {1/2 ≤ |x| ≤ 1} . If we cover {1/2 ≤ |x| ≤ 1} with balls of radius 1/100 ,
µ is again positive on at least one of these. Notice that for θ ∈ SO(2) , (xθ) · (yθ) = x · y . Thus
rotating the measure µ does not affect the quantity in Theorem 1 or 2, so we can assume this
ball is contained in [c, 1]d for a fixed constant c . Then we simply restrict µ to this ball and
renormalize.

3. Proof of Theorem 1 and Corollaries 1 and 3

3.1. Proof of Theorem 1. We define a quantity VT,t which is approximately the quantity
in Theorem 1. Let ρ be a smooth bump function on R supported around 0 and set ρε(·) =
ε−1ρ(ε−1·) . Then define

VεT,t(µ) =
Z
· · ·
Z � Y

(i,j)∈E(T )

ρε(xi · xj − tij)

�
dµ(x1) · · · dµ(xk+1).

The idea is to rip a leaf edge from T one at a time until the tree is empty. One needs a
corresponding mechanism that operators on VεT,t(µ) executing this plan, which is what we
develop below. This is in the same spirit as M. Bennet, A. Iosevich, and K. Taylor’s work on
chain configurations [11]. More concretely, we need to show that VεT,t(µ) ≤ C independently of
ε and t . We recast this problem in terms of operators for which we have nice results. Define
Rεt to be the operator with kernel ρε(x · y − t) , that is

Rεtf(x) =
Z
f(y)ρε(x · y − t)dy.

We also define
Rεt(fµ)(x) =

Z
f(y)ρε(x · y − t)dµ(y).
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1 Then we can cast VεT,t(µ) in a way conducive to ‘ripping off’ edges.

Definition 4. For T a tree with a single vertex, define f εT = 1 . Let T be a tree with k ≥ 1
edges and say y is a leaf with edge (x, y) . Say (x, y) has corresponding dot product t′ .
Remove the leaf edge from T to obtain a subtree T ′ . Define

f εT = Rεt(f εT ′µ).

One can think of f εT (x) as T pinned at x . Then integrating over the pinned point gives the
entirety of VεT,t(µ) . That is

VεT,t(µ) =
Z
f εT (x)dµ(x).

By Cauchy-Schwarz and as µ is a probability measure,

VεT,t(µ) = ‖f εT ‖L1(µ) ≤ ‖f
ε
T ‖L2(µ).

We use the following operator norm to run the induction.

Theorem 3. If µ is a Frostman measure with exponent s > (d+ 1)/2 and with support as was
established in Section 2, Rεt is a bounded linear operator L2(µ) 7→ L2(µ) with

‖Rεt(fµ)‖L2(µ) . ‖f‖L2(µ)

independently of ε > 0 and for t ≈ 1 .

The proof is left to Section 5.1. By our initial reduction µ has support in [c, 1]d , so x · y ≈ 1
on suppµ . In light of Definition 4, f εT = Rεt′(f εT ′) . By Theorem ?? and the inductive hypothesis,

‖f εT ‖L2(µ) = ‖Rεt′(f εT ′)‖L2(µ)

. ‖f εT ′‖L2(µ)

. 1

independently of ε > 0 and t = (tij) . �

3.2. Proof of Corollary 1. Consider any cover of ΛT (E) by products of intervals

ΛT (E) ⊂
[̀ Y

(i,j)∈E(T )

(tij` − ε`, t
ij
` + ε`).

We have

Ek+1 =
[

t∈ΛT (E)

{(x1, . . . , xk+1) ∈ Ek+1 : xi · xj = tij , (i, j) ∈ E(T )}

⊂
[̀
{(x1, . . . , xk+1) ∈ Ek+1 : tij` − ε` < xi · xj < tij` + ε`, (i, j) ∈ E(T )},

so by Theorem 1,

1 = µk+1(Ek+1)

≤
X̀

µk+1({(x1, . . . , xk+1) ∈ Ek+1 : tij` − ε` < xi · xj < tij` + ε`, (i, j ∈ E(T ))})

<
X̀

Cε`.

Thus
P
` ε` > 1/C . This holds for any choice of covering so |ΛT (E)| ≥ 1/C > 0 . �

1This operator is known as the Radon Transform. See Section 5.1 for more details or [12] for an in-depth
review.
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3.3. Proof of Corollary 3. In Definition 1 , we can replace N(A, ε) with P (A, ε) . Here
P (A, ε) is the packing number, the greatest number of disjoint ε -balls with centers in A . This
follows from the inequality

N(A, 2ε) ≤ P (A, ε) ≤ N(A, ε/2),

which one can find in a wonderful book by P. Mattila [13]. Consider such a packing {B(xi, ε)}
of Tt(E) of size P (Tt(E), ε) . Since the centers of the balls B(xi, ε) are in Tt(E) ,[

i

B(xi, ε) ⊂ (Tt(E))ε.

2 For any (x1, . . . , xk+1) ∈ Ek+1 ∩ (Tt(E))ε , there are x′1, . . . , x
′
k+1 ∈ E such that x′i · x′j = t

for (i, j) ∈ E(T ) and |xi − x′i| < ε . Thus

|xi · xj − t| ≤ |xi||xj − x′j |+ |x′j ||xi − x′i|
≤ 2ε,

giving

Ek+1 ∩ (Tt(E))ε ⊂ {(x1, . . . , xk+1) ∈ Ek+1 : tij − 2ε < xi · xj < tij + 2ε, (i, j) ∈ E(T )}.
We can conclude with Theorem 1 thatX
i

µk+1(B(xi, ε)) = µk+1

 [
i

B(xi, ε)

!
≤ µk+1(Ek+1 ∩ (Tt(E))ε)

≤ µk+1({(x1, . . . , xk+1) ∈ Ek+1 : tij − 2ε < xi · xj < tij + 2ε, (i, j) ∈ E(T )})

< Cεk.

Since µ(B(x, r)) ≥ C ′−1rs , we get µk+1(B(x, r)) ≥ C ′−1r(k+1)s . We conclude from the above
calculation that

C ′−1ε(k+1)sP (Tt(E), ε) < Cεk,

so
P (Tt(E), ε) < C ′′εk−s.

We obtain

dimM(Tt(E)) = lim sup
ε→0

log(P (Tt(E), ε))

log(1/ε)

≤ (k + 1)s− k.
�

4. Proof of Theorem 2 and Corollary 2

In this section we consider VT,t with t a scalar as

VεT,t(µ) =
Z
· · ·
Z � Y

(i,j)∈E(T )

ρε(xi · xj − t)

�
dµ(x1) · · · dµ(xk+1).

Our lower bound comes from repeated use of Holder’s inequality, which ‘folds’ the graph onto
itself until reaching a single edge. T itself is not guaranteed to enjoy enough symmetry for such
an argument to work out, so we embed T in a larger graph σ(T ) which is highly symmetric.

Definition 5 (Symmetric Tree Covers). Let T be a tree with at least k ≥ 1 edges. We define
the symmetric tree cover σ(T ) of T as follows. If k = 1 then σ(T ) = T . Otherwise let u
be a non-leaf vertex of T . Let Tu be the tree obtained by collapsing every neighbor of u to a
single vertex and reattaching u to this vertex. Finally join deg(u) copies of σ(Tu) at u and
call the resulting tree σ(T ) .

2Aε is the ε -neighborhood of A defined as Aε = {x ∈ Rd : ∃y ∈ A, |x− y| < ε} .
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· · ·
T1 Tn

T :

· · ·

T
1 T n

Tu :

· · ·σ(T
u ) σ(

T u
)

×n
σ(T ) :

Figure 1 – Inductive construction of σ(T ) .

T•

σ

T•

σ

σ

./ •

./ •

Figure 2 – Unwrapping the induction for a concrete tree. Downward arrows are the construction of
the Tu ’s as in Definition 5. Rightward arrows are the σ operation. Upward arrows are the joining
operation as in the last step of Definition 5. Edges in the upper left graph are tracked in red.

A diagram of the induction is provided in Figure 1. A concrete example is in Figure 2.
Note that the symmetric tree covering can depend on the choice of pivot at each stage, but

we have no need for uniqueness. It is not difficult to establish the following properties of σ(T ) .
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Lemma 1. T ⊂ σ(T ) and σ(T ) is finite.

We proceed by induction. If T is a single edge we are done. Suppose that T has k ≥ 2
edges and T ′ ⊂ σ(T ′) for any tree T ′ on fewer than k edges. Tu contains k− δ(u) + 1 edges,
and δ(u) > 1 as we can take u to be a non-leaf vertex. Thus Tu ⊂ σ(Tu) . σ(Tu) contains a
copy of Tu for each vertex, so it contains each connected component of T \ u connected to u ,
giving T ⊂ σ(T ) . Also σ(T ) is finite as σ(Tu) is by induction finite. �

The base case when T has a single edge is contained in a paper by A. Greenleaf, A. Iosevich,
and K. Taylor [9]. We give the theorem in our notation below, letting e denote an edge.

Theorem 4 (Greenleaf–Iosevich–Taylor [9]). Let µ have exponent s > (d+ 1)/2 . Then there
is an open interval I such that

Vεe,t = 〈Rεtµ, µ〉 & 1

independently of ε > 0 and t ∈ I .

Consider when T has k ≥ 2 edges and let Tu be as in Definition 5. Note that the disjoint
copies of Tu are common only in u . We have

Vεσ(T ),t(µ) =
Z �Z

· · ·
Z Y

(i,j)∈E(σ(Tu))

ρε(xi · xj − t)dµ(x1) · · · dµ(xk′)

�deg(u)

dµ(u),

where we are abusing notation and letting u represent the vertex as embedded in E and as
in the abstract graph T . Here x1, . . . , xk′ are the vertices in Tu excluding u . Since µ is a
probability measure, Holder givesZ �Z

· · ·
Z Y

(i,j)∈E(σ(Tu))

ρε(xi · xj − t)dµ(x1) · · · dµ(xk′)

�deg(u)

dµ(u)

≥

�Z Z
· · ·
Z Y

(i,j)∈E(σ(Tu))

ρε(xi · xj − t)dµ(x1) · · · dµ(xk′)dµ(u)

�deg(u)

= (Vεσ(Tu),t(µ))deg(u) & 1,

where the last line is by induction. �

4.1. Proof of Corollary 2. Set

Kn = {(x1, . . . , xk+1) ∈ Ek+1 : t− 1/n ≤ xi · xj ≤ t+ 1/n, (i, j) ∈ E(T )}.
Then the Kn are nested, non-increasing, and\

n≥1

Kn = σ(T )t(E).

Consider Φ(x1, . . . , xk+1) = (xi · xj)(i,j)∈E(T ) , which is continuous as a function Rk+1 → Rk .
Then Kn = Ek+1 ∩ Φ−1([t − 1/n, t + 1/n]) is compact, being the intersection of a compact
set and a closed set. By Theorem 2 µ(Kn) ≥ c/nk > 0 , so Kn is nonempty. By Cantor’s
intersection theorem σ(T )t(E) is thus nonempty. By the inclusion of T in σ(T ) , Tt(E) is
nonempty. �

5. Appendix

5.1. The Radon Transform. As alluded to in Section 3, we have a family of Radon transforms
Rεt given by

Rεtf(x) =
Z
f(y)ρε(x · y − t)dy.

When µ is a Borel measure we write

Rεt(fµ)(x) =
Z
f(y)ρε(x · y − t)dµ(y).
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The following is a well-known mapping property of Rεt . See [17] for the original argument. For
a source with more background, see Stein and Shakarchi’s book on functional analysis [12].

Theorem 5. Rεt is a bounded linear operator L2(Rd)→ L2
(d−1)/2(Rd) with

‖Rεtf‖L2
(d−1)/2

(Rd) . ‖f‖L2(Rd)

independently of ε > 0 and for t ≈ 1 .

Recall that the Sobolev space L2
α(Rd) is the function space equipped with the norm

‖f‖L2
α(Rd) :=

�Z
(1 + |ξ|2)α| bf(ξ)|2dξ

�1/2

.

We bootstrap off this result to show L2(µ) → L2(µ) boundedness of Rεt . This was done for
convolution operators in [10], but the method also applies (as the authors of [10] remark) to
Radon-type operators. We give the proof below.

Theorem A. If µ is a Frostman measure with exponent s > (d + 1)/2 and with support
as was established in Section 2, Rεt is a bounded linear operator L2(µ) 7→ L2(µ) with

‖Rεt(fµ)‖L2(µ) . ‖f‖L2(µ)

independently of ε > 0 and for t ≈ 1 .
P r o o f. By polarization, it suffices to show that for any ‖g‖L2(ν) ≤ 1 ,

|〈Rεt(fµ), gµ〉| . ‖f‖L2(µ)‖g‖L2(µ)

independently of ε > 0 and t ≈ 1 . To proceed, we localize to dyadic frequencies. We will see
that the large frequencies are the only ones that give us any trouble, so we consider a partition
of unity X

j≥1

χ(2−jξ) + χ0(ξ) = 1,

where χ is supported in the annulus {ξ : 1/4 ≤ |ξ| ≤ 1} . One can construct such functions
by considering a C∞ function φ equal to 1 when |ξ| ≥ 1 and to 0 when |x| ≤ 1/2 , and
letting χ(ξ) = φ(2ξ) − φ(ξ) . The function χ0 is supported in the ball {ξ : |ξ| ≤ 1} and is
also smooth, since

P
j≥1 χ(2−j ·) being the sum of only a finite number of smooth functions in

a neighborhood of any point is smooth. Now we can define the Littlewood-Paley projection by
the relation ÔPjf(ξ) = bf(ξ)χ(2−jξ)

for j ≥ 1 , and ÔP0f(ξ) = bf(ξ)χ0(ξ).

Then f =
P
j≥0 Pjf . Applying the Littlewood-Paley decomposition to fµ and gµ , we obtain

|〈Rεt(fµ), gµ〉| ≤
X
j,k≥0

|〈Rεt(Pj(fµ)), Pk(gµ)〉| (2)

=
X

|j−k|≤M
|〈Rεt(Pj(fµ)), Pk(gµ)〉|+

X
|j−k|>M

|〈Rεt(Pj(fµ)), Pk(gµ)〉|, (3)

where M is a constant to be chosen later. We handle the |j−k| ≤M portion first. We need
a mechanism to transfer an L2

(d+1)/2 bound to a L2(µ) one. We need the following generic test
for L2 boundedness. See [14] Lemma 7.5.

Theorem 6 (Schur’s test). Let (X,µ) and (Y, ν) be measure spaces, and let K(x, y) be a
measurable function on X × Y withZ

X
|K(x, y)|dµ(x) ≤ A for each y ,Z

Y
|K(x, y)|dν(x) ≤ B for each x .
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Define TKf(x) =
R
K(x, y)f(y)dν(y) . Then there is an estimate

‖TKf‖L2(µ) ≤
√
AB‖f‖L2(µ).

Now we can continue to prove the following.

Lemma 2. If µ is a Frostman measure with exponent s we have the estimate

‖Ófµ‖L2(|ξ|≤2j) . 2j(d−s)/2‖f‖L2(µ).

Lemma 2 is a special case of a result in [16]. A straightforward proof of Lemma 2 is contained
in [14], but we give it here with all the details.

P r o o f. Let φ be an even Schwarz function which is ≥ 1 on the unit ball and whose
Fourier transform has compact support. It is not difficult to see that such a function exists. For
example, let f be a real-valued, nonnegative, symmetric C∞0 (Rd) function such as

f(x) =

(
exp(− 1

1−|x|2 ) |x| ≤ 1

0 otherwise
.

Define g := F−1(f) . Then
g(0) =

Z
f(x)dx > 0,

and by rescaling f we can assume g(0) ≥ 2 . g is certainly continuous, so for some δ > 0 ,
g ≥ 1 on {|x| ≤ δ} . Finally define φ(x) = φ(δx) which is as desired.

Now we define φj(·) = φ(2−j ·) , which is at least 1 on {|ξ| ≤ 2j} . Using this and Plancherel,

‖Ófµ‖L2(|ξ|≤2j) ≤ ‖φjÓfµ‖L2

= ‖cφj ∗ (fµ)‖L2 .

This last line is the L2 norm of the function

x 7→
Z

2jd bφ(2j(x− y))f(y)dµ(y).

We have Z
|2jd bφ(2j(x− y))|dx = ‖bφ‖L1

by a change of variables. bφ has compact support in some fixed ball M , soZ
|2jd bφ(2j(x− y))|dµ(y) = 2jd

Z
|x−y|≤M2−j

|bφ(2j(x− y))|dµ(y)

. 2j(d−s).

The last line follows from the fact that µ(B(x, r)) . rs . Now we can apply Schur’s test with
the kernel K(x, y) = 2jd bφ(2j(x− y)) and obtain

‖cφj ∗ (fµ)‖L2 . 2j(d−s)/2‖f‖L2(µ).

Returning to the proof of Theorem A, Plancherel and Cauchy-Schwarz give that the |j−k| ≤
M portion of (3) is dominated byX

|j−k|≤M
‖ÛRεt(Pj(fµ))‖L2(|τ |≈2k)‖×Pk(gµ)‖L2 .

We take advantage of Theorem 5, the L2(Rd) → L2
(d−1)/2(Rd) boundedness of the Radon

transform Rεt . We have

‖ÛRεt(Pj(fµ))‖L2(|τ |≈2k) . 2−k(d−1)/2
�Z

(1 + |τ |2)(d−1)/2|ÛRεt(Pj(fµ))(τ)|2dτ
�1/2

= 2−k(d−1)/2‖Rεt(Pj(fµ))‖L2
(d−1)/2

≤ 2−k(d−1)/2‖Pj(fµ)‖L2

. 2−k(d−1)/22j(d−s)/2.
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Thus we are left withX
|j−k|≤M

‖ÛRεt(Pj(fµ))‖L2(|τ |≈2k)‖×Pk(gµ)‖L2 .
X

|j−k|≤M
2−k(d−1)/22j(d−s)/22k(d−s)/2,

which is summable if s > (d+ 1)/2 .

We still need to handle the |j−k| > M portion of (3). This diagonalization can be executed
with the following Lemma.

Lemma 3. For any positive integer N , there is a K such that if |j − k| > K ,

|〈Rεt(Pj(fµ)), Pk(gµ)〉| .N 2−N max(j,k)‖f‖L2(µ)‖g‖L2(µ),

independently of ε > 0 and for t ≈ 1 .

We give the proof below. With Lemma 3 we see thatX
|j−k|>M

|〈Rεt(Pj(fµ)), Pk(gµ)〉| .N ‖f‖L2(µ)‖g‖L2(µ)

X
|j−k|>M

2−N max(j,k).

This is summable even when N = 1 . �
P r o o f. [Proof of Lemma 3] We will argue by nonstationary phase. By the support prop-

erties of µ , we can insert a bump function η with support in [c, 1]d . By Fourier inversion on
Pj(fµ) and ρε ,

Rεt(Pj(fµ))(x) =
Z
Pj(fµ)(y)η(x, y)ρε(x · y − t)dy

=
y

e2πi(y·ξ+s(x·y−t))×Pj(fµ)(ξ)η(x, y)bρ(εs)dξdsdy

Taking the Fourier transform of Rt(Pj(fµ)) ,ÛRt(Pj(fµ))(τ) =
ZZZZ

e2πi(y·ξ−x·τ+s(x·y−t))×Pj(fµ)(ξ)η(x, y)bρ(εs)dξdsdy.

Finally Plancherel gives

〈Rεt(Pj(fµ)), Pk(gµ)〉 =
y ×Pj(fµ)(ξ)×Pk(gµ)(τ)bρ(εs)dξdτds,

where
Ijk(ξ, τ, s) = χj(ξ)χk(τ)

x
e2πi(y·ξ−x·τ+s(x·y−t))η(x, y)dxdy.

Inserting the smooth cutoffs from the definition of the Littlewood-Paley decomposition is justified
as χj ≈ χ2

j . For convenience we write

Ψξ,τ,s(x, y) = y · ξ − x · τ + s(x · y − t).
We would be done if we could show that

|Ijk(ξ, τ, s)| .N (1 + |s|)−22−N max(j,k). (4)

ρ is Schwarz since it is even C∞0 , so bρ is Schwarz. This gives |bρ(εs)| . 1 . It would follow
from |bρ(εs| . 1 and (4) that

|〈Rεt(Pj(fµ)), Pk(gµ)〉| ≤
y
|×Pj(fµ)(ξ)||×Pk(gµ)(τ)||bρ(εs)|dsdξdτ

.N 2−N max(j,k)
y
|×Pj(fµ)(ξ)||×Pk(gµ)(τ)|(1 + |s|)−2dsdξdτ

= 2−N max(j,k)
Z
|×Pj(fµ)(ξ)|dξ

Z
|×Pk(gµ)(τ)|dτ

Z
(1 + |s|)−2ds.

The integral in s is finite. By Cauchy-Schwarz and Lemma 2, the integrals in ξ and τ are
dominated by 2jd/22j(d−s)/2 and 2kd/22k(d−s)/2 respectively. Thus

|〈Rεt(Pj(fµ)), Pk(gµ)〉| .N 2(−N+2d−s) max(j,k),

so by choosing a large enough N we are done.
Now we prove (4) . We have

∇xΨξ,τ,s = −τ + sy
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and
∇yΨξ,τ,s = ξ + sx.

Assume without loss of generality that j > k +K , so |ξ| � |τ | . When |s| � |τ | ,
|∇xΨξ,τ,s| & |τ | − |s| & |τ |,

Where we used that η has fixed compact support. If |s| � |τ | ,
|∇xΨξ,τ,s| & |s| − |τ | & |s|,

where we use that η is not supported near the origin. If |s| ≈ |τ | ,
|∇yΨξ,τ,s| & |s| − |ξ|

≈ |τ | − |ξ|
& |τ |.

In any case |∇Ψξ,τ,s| & max(|τ |, |s|) .
It is immediate that all the partials of Ψξ,τ,s are bounded above by a constant multiple of

max(|τ |, |s|) . Consider the differential operator

L =
1

2πi

∇Ψξ,τ,s

|∇Ψξ,τ,s|2
· ∇,

for which e2πiΨξ,τ,s is clearly an eigenvalue. Therefore LN (e2πiΨξ,τ,s) = e2πiΨξ,τ,s for any positive
integer N . Thus

Ijk(ξ, τ, s) =
x

LN (e2πiΨξ,τ,s)ηdy′dx =
x

e2πiΨξ,τ,s(Lt)N (η)dy′dx.

The transpose Lt of L is given by

Lt(f) = − 1

2πi
∇ ·

�
∇Ψξ,τ,s

|∇Ψξ,τ,s|2
f

�
= − 1

2πi

�
∇f · ∇Ψξ,τ,s

|∇Ψξ,τ,s|2
− f · ∇

2Ψξ,τ,s

|∇Ψξ,τ,s|2

�
and taking the modulus,

|Lt(η)| . |∇η|max(|τ |, |s|)−1 + |η|max(|τ |, |s|)−1.

We can continue integrating by parts up to any positive N ′ and obtain a bound

|(Lt)N ′(η)| .N ′ max(|τ |, |s|)−N ′
X
|α|≤N ′

|∂αη|.

Taking the modulus of Ijk(ξ, τ, s) , we obtain

|Ijk(ξ, τ, s)| .N ′ max(|τ |, |s|)−N ′
x X
|α|≤N ′

|∂αη|dy′dx .N max(|τ |, |s|)−N ′ ,

since η is Schwarz. Since |τ | ≥ 1 ,

|Ijk(ξ, τ, s)| .N max(|τ |, |s|)−2 max(|τ |, |s|)−N ′+2

. (1 + |s|)−2|τ |−N ′+2

. (1 + |s|)−22−(N ′+2) max(j,k).

Taking N ′ large enough we are done. �
With Lemma 3 proved, we are done. �
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Rd жиынының жiңiшке жиыншаларындағы тура көбейтiндiлердiң ағаштары

Аннотация: А.Иосевич пен К.Тейлор хаусдор өлшемi (d + 1)/2 -ден артық болатын Rd кеңiстiгiнiң компакт
жиыншалары ашық интервалда тесiктi ағаштарды қамтитындығын дәлелдеген. Мақалада осы өлшемдер үшiн
арақашықтықты тура көбейтiндiге алмастыру жағдайында ұқсас нәтижелер дәлелдендi. Сонымен қатар, қамтылған
тура көбейтiндi ағашының тесiктерi оң Лебег өлшемдi жиында үстемдiк етедi, ал Альфорс-Дэвидтың регулярлық
жиыны үшiн берiлген тесiктi ағаштар саны регулярлық мәнi жайлы теоремамен сәйкес келедi.

Түйiн сөздер: Ақырлы-нүктелi конфигурациялар, жалпыланған Радон түрлендiрулерiнiң регулярлығы,
геометриялық графтар.

А. Наджимзаде

Калифорнийский университет, Лос-Анджелес, Калифорния, 90095, США

Деревья прямых произведений в тонких подмножествах Rd

Аннотация: А.Иосевич и К.Тейлор доказали, что компактные подмножества Rd с хаусдорфовой размерностью
больше (d + 1)/2 содержат деревья с пропусками в открытом интервале. В статье при том же размерном пороге
доказан аналогичный результат с заменой расстояния на прямые произведения. Также получено, что пропуски
вложенных деревьев прямого произведения преобладают во множестве с положительной мерой Лебега, а для
регулярных множеств Альфорса-Дэвида, количество деревьев с заданными пропусками совпадает с теоремой о
регулярном значении.

Ключевые слова: Конечно-точечные конфигурации, регулярность обобщенных преобразований Радона,

геометрические графы.
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