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Abstract: A finite algebra A with discrete topology generates a topological quasivariety
consisting of all topologically closed subalgebras of non-zero direct powers of A endowed with
the product topology. This topological quasivariety is standard if every Boolean topological
algebra with the algebraic reduct in Q(A) is profinite. In the article it is constructed the specific
finite modular lattice T that does not satisfy one of Tumanov’s conditions but quasivariety
Q(T) generated by this lattice is not finitely based. We investigate the topological quasivariety
generated by the lattice T and prove that it is not standard. And we also would like to note
that there is an infinite number of lattices similar to the lattice T.
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Introduction. The present work considers quasivarieties generated by specific finite modular
lattices and investigates their property "to be finitely based" and "to be standard".

According to R. McKenzie [1], any finite lattice has a finite basis of identities. The similar
result for quasi-identities is not true, that was established by V.P. Belkin [2]|. In 1979 he proved
that there is a finite lattice that has no finite basis of quasi-identities. In particular, the smallest
lattice that does not have a finite basis of quasi-identities is the ten-element modular lattice
Ms3_3 . In this regard, the following question naturally arises. Which finite lattices have finite
bases of quasi-identities? This problem was suggested by V.A. Gorbunov and D.M. Smirnov [3]
in 1979. V.I. Tumanov [4] in 1984 found sufficient condition consisting of two parts under which
the locally finite quasivariety of lattices has no finite (independent) basis for quasi-identities.
Also he conjectured that a finite (modular) lattice has a finite basis of quasi-identities if and
only if a quasivariety generated by this lattice is a variety. In general, the conjecture is not true.
W. Dziobiak [5] found a finite lattice that generates finitely axiomatizable proper quasivariety.
Tumanov’s problem is still unsolved for modular lattices.

The paper [6] introduces the concept of a finite standard structure, investigates its basic prop-
erties and provides many examples of standard and non-standard structures. The standardness
of algebras was further studied by D.M. Clark, B.A. Davey, R.S. Freese and M.G. Jackson in [7],
who established a general condition guaranteeing the standardness of a set of finite algebras.
Theorem 2.13 from [8] extendes this result. The problem "Which finite lattices generate a stan-
dard topological prevariety?" was suggested by D.M. Clark, B.A. Davey, M.G. Jackson and J.G.
Pitkethly in the same paper [8]. The paper [9] investigated the questions of the standardness of
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quasivarieties and found sufficient conditions under which a quasivariety contains a continuum of
non-standard subquasivarieties without an independent basis of quasi-identities and a continuum
of non-standard subquasivarieties with the so-called finitely split basis of quasi-identities.

In this paper we construct a finite modular lattice that does not satisfy one of Tumanov’s con-
ditions [4] but the quasivariety generated by this lattice is not finitely based (has no finite basis
of quasi-identities). We investigate the topological quasivariety generated by the constructed
lattice and prove that it is not standard. And we would like to note that there is an infinite
number of lattices similar to this lattice.

Materials and research methods. We recall some basic definitions and results for qua-
sivarieties that we will refer to. For more information on the basic notions of general algebra
introduced below and used throughout this paper, we refer to [10] and [11].

A quasivariety is a class of algebras of the same type that is closed with respect to subal-
gebras, direct products (including the direct product of an empty family), and ultraproducts.
Equivalently, a quasivariety is the same thing as a class of lattices axiomatized by a set of quasi-
identities. A quasi-identity means a universal Horn sentence with the non-empty positive part,
that is of the form

(VZ)[p1(Z) = q1(Z) A+ Apu(Z) = qu(T) — p(T) = q(7)],

where p,q, p1,q1,...,Pn,qn are lattice’s terms. A wariety is a quasivariety which is closed
under homomorphisms. According to Birkhoff theorem [12], a variety is a class of similar alge-
bras axiomatized by a set of identities, where by an identity we mean a sentence of the form
(Vz)[s(Z) ~ t(z)] for some terms s(Z) and ¢(Z).

The smallest quasivariety containing a class K is denoted by Q(K). If K is a finite family
of finite algebras then Q(K) is called finitely generated. If K = {A} we write Q(A).

Let K be a quasivariety. A congruence « on algebra A is called a K -congruence or relative
congruence provided A/a € K. The set Cong(A) of all K-congruences of A forms an
algebraic lattice with respect to inclusion C which is called a relative congruence lattice.

The least K -congruence 6k(a,b) on algebra A € K containing pair (a,b) € A x A is
called a principal K -congruence or a relative principal congruence. In case when K is a variety,
relative congruence 6k (a,b) is usual principal congruence that we denote by 6(a,b).

An algebra A belonging to a quasivariety K is (finitely) subdirectly irreducible relative to
K, or (finitely) subdirectly K -irreducible, if intersection of any (finite) number of nontrivial K-
congruences is again nontrivial; in other words, the trivial congruence 04 is a (meet-irreducible)
completely meet-irreducible element of Congk(A).

Let (o] ={z € L|z<a} (Ja)={x € L|z>a}) be a principal ideal (coideal) of a lattice
L. A pair (a,b) € L x L is called dividing (semi-dividing) if L = (a] U [b) and (a]N[b) = &
(L=1(a]Ub) and (a]N[b) # @).

For any semi-dividing pair (a,b) of a lattice M we define a lattice
Ma—p = ({(2,0), (y,1) e M x 2|z € (al,y € [D)};V, A) <s M x 2,
where 2 = ({0,1};V,A) is a two element lattice.

Theorem 1 (Tumanov’s theorem [4]). Let M, N (N C M ) be locally finite quasivarieties of
lattices satisfying the following conditions:

a) in any finitely subdirectly M -irreducible lattice M € M\N there is a semi-dividing pair
(a,b) such that M,_, € N ;

b) there exists a finite simple lattice P € N which is not a proper homomorphic image of any
subdirectly N -irreducible lattice.

Then the quasivariety N has nmo coverings in the lattice of subquasivarieties of M . In par-
ticular, N has no finite basis of quasi-identities provided M is finitely axiomatizable.

A finite algebra A with discrete topology 7 generates a topological quasivariety Q,(A)
consisting of all topologically closed subalgebras of non-zero direct powers of A endowed with
the product topology. Profinite algebras are exactly those that are isomorphic to inverse limits
of finite algebras. Such algebras are naturally equipped with Boolean topologies. A topology
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7 is Boolean if it is compact, Hausdorff, and totally disconnected. A topological quasivariety
Q-(A) is standard if every Boolean topological algebra with the algebraic reduct in Q(A) is
profinite. In this case, we say that algebra A generates a standard topological quasivariety. For
more information on the topological quasivarieties we refer to [7] and [8].

Results and discussion. Let T be a modular lattice displayed in Figure 1. And let
N = Q(T) and M = V(T) be the quasivariety and variety generated by T, respectively.
Since every subdirectly N -irreducible lattice is a sublattice of T, we have that a class Ng;
of all subdirectly N -irreducible lattices consists of the lattices 2, M3, Ms_3 and T (see
Figures 1 and 2). It easy to see that M3 is a unique non-distributive simple lattice in Ng; and
is a homomorphic image of T'. Thus, the condition a) of Tumanov’s theorem is not valid for
quasivarieties N C M.

T

Ficurge 1 — Lattice T

M; < ; :< % :
M3 3 Ms_3

Ficure 2 — Lattices M3, M33 and M3_3

Let S be a non-empty subset of lattice L. Denote by (S) the sublattice of L generated by
S.

We define a modular lattice L,, by induction:

n=1. L1 = Ms_3 and L; = ({a1,b1,c1,e,d}) (see Figure 3);

n = 2. Lo is a modular lattice generated by Lj U {ag,be,ca,d} such that b; = co,
({a2,b2,c2,e,b1}) = M3, and ao Vb =eAdy, dVby =di, and by < d (see Figure 3).

n > 2. L, is a modular lattice generated by the set {a;,b;,c; | i <n}U{e,d} such that a;
is not comparable with a; and by for all j #4 and k <n, bi—1 =¢;, ({a;,b;,¢;}) = M3 for
all i <n, byvVd=d; forall i <n,and b, <d (see Figure 4).
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One can see that L, is a subdirect product of the lattices L,_1 and M3 for any n > 2.

Ficure 3 — Lattices L;, Lo

Let L, be a sublattice of L,, generated by the set {a;,b;,c; |i <n}.
First, we prove two lemmas that will be used in proving the main result, Theorems 2 and 3.

Lemma 1. For any n > 1 and a non-trivial congruence § € Con(Ly) there is 1 < m < n
such that Ly /0 = Ly, or Ly,/0 = Ms3 provided (a1,b1) ¢ 6, otherwise L,/0 = L., .

Proof of Lemma 1.

We prove by induction on n > 2. One can check that it is true for n = 3 because of
L3/0 = Ly or L3/0 = Ms33 if (a1,b1) ¢ 6 and L3/0 = L, or L3/0 = Ms for any non-trivial
congruence 6 € Con(Lsz) .

Let n > 3. And let u cover v in L, and O(u,v) C 6. By construction of L, , we have
Ly,/0(u,v) = Ly_q or Ly/0(u,v) =L, .

Assume (ay,b1) ¢ 6. Since for every non-trivial congruence 6 € Con(L,,) there are u,v € L,
such that u covers v and O(u,v) C 6, we get

Ln/0 = (Ln/0(u,v))/(0/60(u, v)).
Since L, /0(u,v) = L,_; we obtain
Ln/0 = (Ln/6(u,))/(0/0(u, v)) = Ln1 /6",

for some 0" € Con(L,—1). And, by induction, L,_1/0" = L, or L,_1/0' = Ms3 for some
m >0. Thus L,/0 = L,, or L,/0 = Ms3.
Now assume (a1,b;) € 0. Then 6(ai,b1) = 0(u,v) and L,/0(u,v) = L, . Hence

Ln/0 = (Ln/0(u,v))/(0/0(u, v)) = L, /0,

for some 6’ € Con(L; ). It is not difficult to check that L. /0" = L. for some m > 0 (see
Lemma 3.1 [13]). Thus L, /0 = L,, or L,/0 = L., .

Corollary 1. For all n > 1, there is no proper homomorphism from L, to Msg_g and T .

Proof of Corollary 1.

We provide the proof for a proper homomorphism from L, into M;3_3. It is not difficult to
check that the same arguments hold for a proper homomorphism from L, into T'.

Assume h : L, — M3_3, n > 1, is a proper homomorphism. Hence ker h is not a trivial
congruence on L, . By Lemma 1, L,/kerh = L,, or L,/0 = Msz3 or L,/kerh = L. for
some m > 1. Thus L,, = h(L,) < Ms3_3. It is impossible because, by definition of L, ,
|Ly| > |Ms_3| for all m > 1, hence L,, is not a sublattice of M3_3. Obviously, Ms3 and
L;, are not sublattices of M3_3. Thus there is no such homomorphism 4.
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Lemma 2. For every n > 2, a lattice L, has the following properties:
Z) Ln <s Ln—l X Ln—l ;
ii) L, € V(M373) = V(T);
iii) Ly & Q(T);
iv) Every proper subalgebra of Ly, belongs to Q(T).

Proof of Lemma 2.

i). Onme can check that L,/6(a;,b;) = L,—1 for all 1 < i < n. Since n > 2 then
0(az,b2),0(as,b3) € Con(L,) and 6(ag,bs) N 6(asz,b3) = A. This means that L, <,
Lnfl X Lnfl .

ii). One can see that T' is a subdirect product of M3z and Mss. Hence T' € V(M33).
On the other hand, by Jonsson lemma [14], every subdirectly irreducible lattice in V(T is a
homomorphic image of some sublattice of T". Hence M3z € V(T'). Thus V(M33) = V(T),
and, by i) and induction on n, we get L, € V(T).

iii). Suppose L, € Q(T') for some n > 1. Then L, is a subdirect product of subdirectly
Q(T) -irreducible algebras. Since every subdirectly Q(7') -irreducible algebra is a subalgebra of
T, we get that L, is a subdirect product of subalgebras of T'. By Lemma 1, there is no proper
homomorphism from L, onto T" or Ms3_3. Hence L, € Q(Ms3) for all n > 1. It is impossible
because Msz_3 < L, and Ms_3 ¢ Q(M3).

iv). We prove by induction on n. It is true for n < 2 by manual checking. Let n > 2 and
let S be a maximal sublattice of L, . Since the lattice L,, is generated by the set of double
irreducible elements {ai,...,an,c1,e,d}, thereis 0 < ¢ < n such that a; € S or ¢; ¢ S or
e¢Sord¢s.

Suppose ¢; ¢ S. One can see that (S) <g 2 x M3 x L, ;. Since L,_1 <; Mg‘_l we get
(S) € Q(M;3) C Q(T).

Suppose e ¢ S. Then (S) <2 x L, <,2x M§ € Q(M3) C Q(T).

Suppose d ¢ S. Put S,, = {{a1,...,am,c1,e}, m <n,and T,, = (Sy,). One can see that
T /0(ai, b;) = Thyq forall 1 <i<m. And T),/6(a1,b1) = L, . Since §(a1,b1)NO(a;, b;) =
A | by distributivity of Con(7,,), we have 0(ai,b1) N (\/{0(a;,b;) | 1 < i < m}) = A. Since
T/ (V{0(ai,b;) | 1 <i<m}) =T we obtain (S,,) <,Tx L, | <,Tx My~ ecQ(T).

Suppose a; ¢ S. Since n > 1 and S is a maximal sublattice, then there are i # k #£ 1 # i
such that 0(by, ck),0(b;, ¢;) € Con(Ly,),

0(bk, ) NO(br, cr) = A.
and
Ln/e(bk,ck) = Ln/H(bl,cl) = L,-1 or {Ln/e(bk,Ck),Ln/G(bl,Cl)} = {Lnfl,L;_l}.

We provide the proof for the first case, Ly, /6(bg,cr) = Ly /0(b, ;) = Ly—1 . These isomorphisms
mean that L, <; Lp,_1 X L1 and S < L,_1 X Lp_1. Let hy : L, — L,_1 and h; :
L, — L,_1 are homomorphisms such that kerhy = 0(by,cx) and kerh; = 0(b;,¢). Since
(ai,bi) & O(bk,cx) UO(b,c;) then hi(S), hi(S) are proper sublattices of L,_;. And, by
induction, hi(S),hi(S) € Q(T). As by, ck, by, c; € S, the restrictions of congruences 6(bg, cx)|s
and 0(b;,c;)|s on the algebra S are not trivial congruences on S. Moreover 0(bg,ci)|s N
O(by,c1)|ls = A. Tt means S <g hi(S) x hy(S). Hence S € Q(T'). Since every maximal proper
subalgebra of L,, belongs to Q(7T) then every proper subalgebra of L, belongs to Q(T).

It is not difficult to check that for {L,/0(by,ck),Ln/0(bi,c;)} = {Ln-1,L, 1} the same
arguments hold.

For quasivariety Q(7') generated by the lattice T', the lattice L, satisfies the conditions of
the following folklore fact: A locally finite quasivariety K is not finitely axiomatizable if for any
positive integer n € N there is a finite algebra L, such that L, ¢ K and every n-generated
subalgebra of L,, belongs to K. Indeed, by Lemma 2(iii) , L,, ¢ Q(T') for all n > 1. Since L,
is generated by at least m + 1 double irreducible elements then every n-generated subalgebra
of L, is a proper subalgebra. By Lemma 2(iv), every n-generated subalgebra of L, belongs
to Q(T). Hence Q(T') has no finite basis of quasi-identities. Thus, we establish the following
fact.
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FicuRrEe 4 — Lattice L, , n > 2

Theorem 2. The quasivariety generated by the lattice T has no finite basis of quasi-identities.

Now to prove that T generates a non-standard topological quasivariety, we will use the
following lemma. It can be obtained from Lemma 3.3 of the paper [8]:

Lemma 3. Let R be a quasivariety, and let A = l&n{An | n€ N} be a surjective inverse limit
of finite algebras. Suppose that A € R and there are a,b € A such that a #b and p(a) = ¢(b)
for any homomorphism ¢ : A — M with M € R and M is finite. Then R is not standard.

The following theorem is true.
Theorem 3. The topological quasivariety generated by the lattice T is not standard.

Proof of Theorem 3.

So, to prove this statement, we need to check the feasibility of the conditions of Lemma 3.

Let ¢pn—1 be a homomorphism from L, to L,_; such that ker ey, ,—1 = 6(an,by), and
©n,n an identity map for all » >1 and m <n. And let @,.m = @mt1,m o0 Ppn-1. It can
be seen that {L,;@nm, N} forms inverse family, where N is the linear ordered set of positive
integers.

We denote L =lim{L,, | n € N} and show that L € Q(T).

Let a be a quasi-identity of the following form

&i<rpi(To, .-y Tn1) R qi(20, .-, Tn—1) = p(To,. .., Tn-1) = q(To, ..., Tn_1).
Assume that « is valid on Q(7") and
L = pi(ag,...,an—1) = ¢i(ag,...,an—1) forall i<r,

for some ag,...,ap_1 € L. From the definition of inverse limit we have that L <j Hz‘e 1 Li.
Therefore

Ls E pi(ao(s),...,an—1(s)) = qi(ap(s),...,an—1(s)) forall i<r.
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Each at most n spawned subalgebra of Ls belongs to Q(T') for all s > n, by Lemma 2(iv).
Hence « is true in Ly for all s > n. And this in turn entails

Lg = p(ao(s),...,an—1(s)) = q(ao(s),...,an—1(s)).

Since a;(m) = psm(ai(s)) forall 0 <i<n and m < s, we get

L, E plag(m),...,an—1(m)) = qlap(m),...,an—1(m)) forall m < s.
So
L Eplag,...,an—1) =qlag,...,an—1).

Hence L = a, for every « that is valid on Q(7"). This proves that L € Q(T).

We obtain ¢y, m(a1) = a1 and ¢pm(b1) = b1, by definition of ¢,,—1. And a =
(a1y...,a1,...), b= (b1,...,b1,...) € L, by definition of inverse limit. Let ¢ : L — M be a
homomorphism, M € Q(T) and M finite. There is n > 2 and homomorphism ¥, : L, — M
such that a = ¢, 01 for some surjective homomorphism ¢, : L — L,, (by universal property
of inverse limit). Since nr(L,) < M < (T)* for some k > 0, by Corollary 1 of Lemma 1, we
obtain that s (Ly) is trivial. That is ¥p(z) =1 for all x € L, . So we get a(a) = a(b).

Thus, we obtain that the topological quasivariety generated by T is not standard.

We note that there is an infinite number of lattices similar to the lattice T .

The proof of Theorem 3 gives us the following more general result.

Theorem 4. Let L be a finite lattice such that Mz3z £ L, T <L and L, £ L forall n>1.
Then the topological quasivariety generated by the lattice L is not standard.

Conclusion. In the present work we construct the finite modular lattice T' that does not
satisfy one of Tumanov’s conditions but the quasivariety generated by this lattice is not finitely
based. It has no finite basis of quasi-identities. We investigate the topological quasivariety
generated by the constructed lattice and prove that it is not standard. And we would like to
note that there is an infinite number of lattices similar to this lattice 7T .

Acknowledgments. The authors thank A.M. Nurakunov for his attention and useful re-
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script.
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KBAa3UKOIOeiHe, CTAHIaPTThI TOMOJIOTUSIBIK, KBA3UKOOEHHE.

C.M. Jlyuak, O.A. BopoHuna

Cesepo-Kasaxcmanckuti yrusepcumem umenu Manawa Koswvbaesa, ya. I[Tywxuna, 86, ITemponasaosck, 150000,
Kasaxcman

O HEKOTOPBIX CBOMICTBaX KBAa3MMHOrooopasuii, HIOPOXKJAEHHBIX OIPEAeJIEHHBIMI KOHEYHBIMU MO/YJISIPHBIMU
peuieTKamMu

AnHoranus: Koneunas anre6pa A ¢ AHCKPETHOH TOIOJIOTHEH HOPOXKIAET TOIOJIOTMYECKOEe KBAa3MMHOIooOpasue,
COCTOsIIIIeE M3 BCEX TOIMOJIOIMYECKN 3aMKHYTBIX MOHAJIreOp HEIMyCTHIX AEKapTOBBLIX CTEIeHeil aurebpbl A, 3aMKHYTBIX
B COOTBETCTBYIOLIMX JEKAPTOBBIX TONOJOIHAX. DTO TOIOJOTHYECKOE KBa3MMHOrooGpasue sBIISETCs CTAaHIAAPTHBIM,
ecim Kakaas OyjeBa ToOHoJOrmYeckas anrebpa ¢ anrebpamdeckum peaykrom B Q(A) saBnsierca npodwunmTHON. B
cTaThbe MPOBOJUTCS IIOCTPOEHHWE KOHEYHON MOMyIspHON pemerku T, KOTOpas He yJOBJIETBOPSET OJHOMY U3 YyCJIOBUI
Tywmanosa, HO KBazumHoroobpasue Q(T), MOPOXKIEHHOE ITOI PEIeTKON, He sBJAETC KOHEIHO GasupyeMbiM. Hccmemyercs
TOIIOJIOTMYECKOE KBa3MMHOIroo6pasue, IopoXKJeHHoe perreTkoii T, u 10Ka3aHo, UTO OHO HE SIBJIAETCS CTaHJapPTHBIM. Takrke
HeO6XO,ELI/II\/IO OTMETUTH, UTO CYIIIeCTBYeET 66CKOH€‘IHO€ MHOZKECTBO DENIeTOK, HO,HO6HI>IX penieTke T.

KurroueBble ciioBa: pelieTka, KOHEYHasi pellleTKa, MOAYJIspHasi PelleTKa, ycjaoBusi TymaHoBa, KBasuMHOroobpasue,

TOIIOJIOTUYIECKOEe KBa3I/IMHOF006pa3I/Ie, CTaHJapTHOE TOIIOJIOTUYIECKOe KBa3I/IMHOI‘OO6pa3I/Ie.
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