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Pinned point configurations and Hausdorff dimension !

Abstract: We prove that if the Hausdorff dimension of a compact subset E of R? with
d > 2 is sufficiently large, and if G is a star-like graph with two parts, and each of its parts is a
rigid graph, then the Lebesgue measure in the appropriate dimension, of the set of distances in
E specified by the graph is positive. We also prove that if dimy(E) is sufficiently large, then

/ ve(ri)dva (i) > 0,

where v is the measure on the space of distances specified by G which is induced by a Frostman
measure. In particular, this means that for any r > 0 there exist many configurations encoded
by t with vertices in E such that the vertices of rt are also in E .
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1. INTRODUCTION

Let G be a connected graph on k41 vertices. Let V = {z!, 22, ..., 21} denote the vertex
set and eg the edge map, where eg(i,j) = 1 if ' and 2/ are connected by an edge, and
0 otherwise. We will only consider undirected graphs with no self-edges, so eg(i,i) = 0 and
ec(i,j) = eq(j,i) for all i,5. Let £(G) denote the edge set, namely

{(i,j) eV xV:ela' al) = 1}/~,

where ~ is the equivalence relation (i,7) ~ (7,17) .

Given such a graph and a compact subset of R%, we are interested in the set of various
point-configurations specified by the graph. More precisely, given a Frostman measure on the
compact set, we define the induced measure on the space of distances specified by the garph.

Definition 1. Let G be a graph as above, F C R, d > 2 a compact set and p a Frostman
measure on F . Define the induced measure vg by the relation

/ F (v (F) = / . / F(De(at, .. ) du(e ) dp(a?) . dp(a ),

where t = {tij}(i,j)es(G) is a set of positive real numbers, Dg(z?,... ,xkﬂ) is a vector of

length equal to #&(G) with entries |2° — 27| for (i,j) € £(G), with the entries ordered in the
dictionary order.

Given such a compact set and a graph, for point configurations in the set we define their
distance-profiles specified by the graph.
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Definition 2. Given a compact set E C R?, d > 2, define
Ag(E) = {Dc(xl, O R = E} C RH#EG).

Also define
AL(E) = {t € Ag(E) : 1t € Ag(E)} C Aq(E).

For e > 0, define a smooth approximation of vg on RF by the density

vE(t) = / / 11 at (2" — 27) du(z)...dp(a*h)

ti,;€E(G

- [+ / HTG 21)...dpu(z*+Y),

where T, encodes the part that belongs to G;. Let oy, i be the normalized surface measure on
the sphere of radius #;; and of_(t) := oy, * pe(t) , with p € C(RY), p>0, supp(p) C {|s| <
1}, [p=1,and p(t) = e 9p(e7't). Then each vg € C5° and vg — vg weak* as € — 0.
Thus,
va(AG(E)) = lim v (rt) duvg(t).

e—0 Rk

Definition 3. Let G be a graph that can be decomposed as follows. Let G = U;G; where
G1,...,Gy is a family of connected graphs. Suppose that any G; has exactly one vertex in
common with any other G; if 7 # j, and no other vertices in common between G; and Gj,
and there are no edges connecting vertices in G; to vertices in G if ¢ # j except for their
common point. Then we call G a star of G;.

In this paper, we consider the case when all such G; are rigid. A graph being rigid essentially
means that continuous motion of the points of the configuration maintaining the edge length
constraints comes from a family of distance-preserving Euclidean motions. The precise definition
is the following.

Definition 4. Given a graph G with V = {2} 22, ... ,xk“} being its vertex set, let K be
the smallest graph containing G such that K is a complete graph. Let

Fg = {|lz" — 27* : t;; is an edge of G}.

An infinitesimal motion of G is @ = (ul,...,u**1) a (k+ 1)-tuple @ of vectors u/ € R?
such that DFg -4 =0.

If the set of infinitesimal motion of G and the set of infinitesimal motion of K are the same
set, then G is called an infinitesimal rigid graph.

For a detailed discussion of rigidity in this sense refer to [2].
Our main results are the following.

Theorem 1. Let G be a star of 2 graphs {G;} such that both G; are infinitesimally rigid. For
every i let k; + 1 be the number of vertices G; has and set k = ki + ko, so that G has k+1

vertices. If k>4, d>2 and E is a compact subset of R? of Hausdorff dimension larger than
% then

L™(Ag(E)) >0, (1)
where m is the number of edges of G .
Note, by the definition of a rigid graph, we have that if k1 > d, to compute the number of its

edges, each of the vertices has d components, and we subtract the dimension of the Euclidean
motion group. So the number of edges of Gy is d(k; + 1) — (dgl) . If k1 < d, it has to be a

k1— simplex, so the number of edges of G; is (’“12Jr 1) . Similarly for Go, if ks > d, the number
of edges of Gg is d(ky+1) — (dH) and if ko < d, the number of edges of G is (k22+1) .
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Therefore, if ki,ko > d,

m=3" [d(ki—l—l)— (d‘;)] _d(k+1)—2<d’51> — dk — .

=1

If /-6‘1>d and kQSd,
m:d(kl—i-l)—(d

m=d(ky+1) — <d;1> + <k12+1>.

ki +1 " ko +1
m = .
2 2
remark 1. Note, that the dimensional threshold we obtain is just the case n = 2. We expect
that a similar result will be proved in the case for general n .
That said, the present result is still an improvement on currently available thresholds. Since

the graph G in the above theorem is a subgraph of a (k + 1)— simplex, the results of 2] give
that (1) holds when the Hausdorff dimension of E is larger than d — k%rl Since d > 2,

our new bound % is an improvement. Also from |7], we know that (1) holds when the

dk+1  q: dk+1 o dk+1-d . .
e Since B R when d > 2, our threshold is

N+
[a—y
~_
+
Y
o
(V)
N4
—
~__

If by <d and ko >d,

If k1,ko <d,

Hausdorff dimension is larger than
an improvement on that as well.

In order to state our second result, we need the following definition.
Definition 5. Let d > 2, k> 1. Let G be a connected graph on k+1 vertices as above. Let
E be a compact subset of R%, d > 2. Define

sg = inf {3 tdimy(F) > s = vg is absolutely continuous, and /V%(f}df< oo} .

We say sq is the L? -threshold corresponding to the pair (G, E).

Allan Greenleaf, the first and second listed authors proved that if G = K41, k < d, and
E CcR?*, d>2,is a compact set of Hausdorff dimension larger than s¢ , then

ve(AL(E)) > 0 2)

for any r > 0. Roughly speaking, this means that for any r > 0 there exists a statistically
correct number of pairs of k-dimensional simplexes that are similar to one another with the
similarity ratio equal to r. The purpose of the second main result is to establish this type of a
result for star-like graphs.

Our second main result is the following.

Theorem 2. Let E be a compact subset of RY. Let G be a star of 2 infinitesimally rigid
graphs {G;} . Suppose that

/VGi (TadVGi(ﬂ >0, (3)

and dimy(E) > sq, for all i. Then, if dimy(E) > s =max{sqg,}, we have

/Vg(rf)dug(f) > 0. (4)
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2. PROOF OF THEOREM 1

We first prove the following proposition, which will help us to prove Theorem 1.
Let O4q(R) be the orthogonal group of rotations of R? and given 6 € O4(R) define the
measure \g on R? via the relation

[ @) = [ [ 1= ov)autwduto).

Proposition. Let G be a star of n graphs {G;} such that all G; are infinitesimally rigid. For
every i let k; +1 be the number of vertices G; has and set k= [[;_, ki, so that G has k+1
vertices. Then

/@@ﬁ<m

if and only if

lim /"‘/)\(31 (z — lel)k_nﬂ H)\fgi (z — 0;2")dp(z)dp(x") Hd@i < 00,
=2 =1

e—0t
where A\¢ denotes the convolution of \ with the approximation to the identity at level €.

Proof. Let vg denote the convolution of vg with the approximation to the identity at
level €. We'll prove the proposition by induction on the number of components n of the star
graph G . First, suppose that n = 2.

Using the same method as in Proposition 3.1 in [6], we can directly get

lirerljglf/yé(f)dyg(f) ~ ///\5(:): — Hx’)kl)\é,(w — ¢\ du(x)dp(2')dbde (5)

where x is the common vertex of G; and G5, # and ¢ correspond to the rotation of G; and
G2 respectively.

Here and thereafter, X < Y means there exists a constant C' such that X < CY . The
relation X 2 Y is defined similarly. In addition we write X ~ Y if both X < and X 2 Y
hold.

Then by the Three Line Lemma, the right-hand side of (5) can be approximated as

~ / . / Xo(z — 02 I (3 — o) dp() dpu(a ) dBdg,

which corresponds to an infinitesimal rigid graph with k vertices with an extra edge added.
Therefore,

fon ) €2 Ing
hrerl}glf/ug (t)dt < oo
if and only if
/. : -/Ag(x —02) TN (@ — pa)dp(x)dp(a’)dbdp < .

For general n, using the same method when we are dealing with n=2, we can directly get

lim n / Ve, (F)df ~ / / 2o, (& — 012 v (F)dp() (') a6y dF (6)
€e—

where G’ is the subgraph of G containing only Gb,...,G,, , and t correspond to E(G'), which
is the edge set of G’, and z is the common vertex of all Gj.
By the inductive hypothesis, (6) is

n—1
s ki—n42
/ / — 612") )\52 (x — 023:')21—2 ’ N, (@ — Opa”)dp(x)dp(2")d6, db2db,,
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and applying the case n = 2, we get this is

~ / . / N, (& — 012') T N, (& — 032! )du()du(a’) T T 6,
i=2 =1

finishing the proof of Proposition 2.
We're now ready to prove Theorem 1:

Proof. [Proof of Theorem 1]
By Proposition 2, we only need to estimate

/ . //\51 (x — le’)k_l)\§2 (x — 022" )dp(x)dp(x")dh1dbs. (7)

Since (7) corresponds to a graph which is a star of graphs with all except one of its components
being a single edge, let’s use ¢ to denote the edge corresponding to Ay, in this new graph. Then
(7) is equal to

/. . ./)\gl (x — Hlx/)k_l (of * p(x)of = p(x')) du(z)dp(z")db, dt (8)

Let kg be defined similarly to Ag, via the relation

[ f@dsosta) = [ [ =60 of x uwot + plo)dta)dute).

Then by this definition, we get that (8) is equal to

/ / 5917t(z)dzd91dt.

We use the Littlewood-Paley decomposition of it, and here the Littlewood-Paley piece is
defined by Ag; = Ag(€)p(277€), where p is a nonnegative bump function supported on {% <

1]l <2}, such that 3, p;(§) =1 for all £ where p;(§) = p(279€) .
So we have that (7) is

- Z / / 01’]1 El»jk—l(z)ﬁgl,t,jo (2)dzdf,dt

J0sJ1se e Jk—1

N Z Z / / 017‘71 217]'1671(2,)%21,1573‘0 (Z>d2d91dt (9)

Jo 0<j1<-<jk—1

=MD DI Bt /9 s (I (2 ezt

Jjo 0<j1<-<jg—1

And we have
185, 1 5ll00 S 118112 (10)

where df(z) = of * p(z)du(z) .
Let 1 be a smooth positive function such that ¢ > p and [|¢|| is bounded. Such v exists
because |p(z)] < Cn(1+ |z|)Y for some constant Cy and integer N. Then

11 = [ 180 de~ [ 1,(0P0(5;)ae
~ 20 / - / B2 (& — o)) % p(x)or * pla!)dpu()dpu(a)

< 21790 #1220
According to Theorem 2.1 in [1], we have that [|of * u|[12(,) is bounded when s > L From

the assumption we have £ >4 > 2 and d > 2 > 1. Then there is (d — 1)(k — 2) > 0, and
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we get E=dtl > drl g5 the result from [1] applies and for each i, the left-hand side of (10) is
bounded by 2Jo(d— S). Therefore each jo-th piece of (9) is

< 9Jo(d—s) Z / /)\91 i gl’jk_l(z)dzdel.

0<j1<<gr—1

Using the Plancherel theorem, we estimate this by

S 2do(@=e)l) Z / //\91,11 K 5\917jk—3 (2) 5‘91,%—1('2) ) 5‘491,jk—2 (z)dzdf.
0<j1<<jp—1
The support of )\91 ¥ g, G 3*5\91 e, hasscale 2714 420k=3 4 2Jk—1 ~ k-1 > 2Jk-171

and the support of /\91 Jjx_o hasscale 2Jk—2  Therefore, if ji_1 —jr_3 > 2, then 2/k—171 > 2Jk—2
and

/- . -/jxgm-l (2) % -+ % 5\917%73 (z) * 5‘91,3';@71(2) . 5‘91,3'1@72 (2)dzdb =0

in this case.
If jx_1 — jk—o = 1, then by Cauchy-Schwarz

(/ / 01,5 (2 ~)‘§1,jk1(z)dzd01)2
S</ JEWCE zl,jk_3<z>(gl,jk_1<z>)2dzdel>
(/ / 0 (2 ~/\51,jk,3(2)( g,jk2(2)>2d2d01)

which reduces to the product of two integral with their largest two indices for A equal. It follows
that we only need to consider the case when jr_1 = jr_o . Similarly, by the orthogonal property
of Littlewood-Paley pieces, we only need to consider the case jo = jr_1 = jx_2 = J

Thus, using (10), we have that (9) is

s . . . 2
< 9i(d-9) T // O () Ny (2) (M9, (2)? dzdby

0<j1<)2 < <Jr—3<J

< 9ild Z Z o(i1++jk—s) / / 6,.(2 dzd91

J 0<j1<52<<jr—3<J
(d—s) (k—3)(d—s
< 21 C’Z 21 [ (¥6,5(2)) dzdoy

By Section 5 and Theorem 3.1 in [7], we can use the Wolff-Erdogan Theorem to get the
following result:

/ B / (A5, (x — 612))? dp(x)du(')doy S 29(F9)=71(D)

where y(s,d) =s—1 if s> T2 and 7(s,d) = ®2=2 if ¢ <5< 42

It follows that (9) is

< Z 9 (d—5)9j(k=3)(d—s)9j(d—s)9—jv(s,d) _ Z 9il(k=1)(d—s)—7(s,d)]
J J

If k>4 and d > 2 are true, then a simple computation shows that dk_de d+2 . Thus if
s > %=dtl then s > £2  which implies that (k—1)(d—s)—(s,d) = (k 1)(d— )—( 1) < 0.

If k 2 4 and d = 2 are true, then s > dkfkdﬂ = ngl > 1 = ¢, which implies that
(k—1)(d—s)—7(s,d) = (k—1)(2—s) — 22Z=2 =2k —2— (k— 1)s. Simple computation shows

that we have s > 2t-1 ik 2 which entalls that (k—1)(d —s) —7(s,d) <O.
2
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3. PROOF OF THEOREM 2

For ¢ =1,2, let 6; be rotations such that
Tei(le _ sz) c B(yjl _ yj2’6)
for tj1j2 in Gz
Suppose r > 0. Then we have

[ vete® av(d) = [ 16, (0T, (@) dusa).cdi(a )

el [ kf[ldu V).

lly* —y? | —r|z’ —a7||<e
for all i,j s.t. t;;€E(G)

For rotation 0;, just like in the last section, A,g, is defined to be a measure on R? by

[ 1) @) = [ fu=r60) dutdnto) . 1 € Cof)

It has total mass |[A.g,|| = p(E)?. Let df be the Haar probability measure on O4(R) .
We have
hlerl}(r)lf / v (rt) dvg(t)

/ / ron (Y Telx))kl (Ao (v — 7«92;3))"32 dp(z)dp(y)dordos

/ / (/ oy (v = r12)" d92> < / (X, (y — 702)) "™ d92> dp(z)dp(y).

Without loss of generality, we can assume ki > ks .
By Cauchy-Schwarz, if k; is odd, then

</ / (/ o, (Y — Telx))kl d91> </ (M50, (5 — 7'9293))k2 d92> du(x)d,u(y))
</ / (/ o, (y —ro1z)) d01> -/()\;92 (y — r«92:c))k2 dbs dlu(m)du(y)>
= ( / / / ()‘;01(?/*7“9196))% b, < / (X g, (y — r02))"™ d02> dﬂ(;p)dﬂ(y)y

Note, that the second term of the left-hand side of the above inequality corresponds to a
star-like graph with 2 parts, so is bounded above by following exactly the same steps when we
proving Theorem1 until the last step of that proof. Therefore,

(/ /(/ <o, (y — r012))" d91> (/ (Mg, (y — 62))"™ d02> du(x)d,u,(y))
> ( [ [ [ o tw=r000) ™ an ( [ (6ot r020)" d92> du(x)d,u(y))g.

If k1 is even, we have

</ / </ oy =) dal) </ (Nogs (v = r622))" d92> du(x)dﬂ(y)>
(/ // 70, (Y —r92x))k2d02 du(:ﬁ)d,u,(y)>
> ([ ] [ o= ron® ao (f Gt —roun)* o) du(w)du(y)>2'
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Again, the second term of the left-hand side of above inequality corresponds to a star-like graph
with 2 parts, so is bounded above because of the same reason in the odd case. Therefore,

</ / (/ Lo (y — r012))" d‘91> </ (A gy (y — 7022))™ d01> du(x)dp,(y)>
(/ // A 7”91*’13))%1 dby (/ (Ao, (v — 7“'92$))k2 d92> d,u(a:)du(y)>2,

Using the above process repeatedly, we get

/ /</ ro (Y —r&i:c))kl d91> (/( 5,,92(y—r02;c))’“2 d92> dp(z)dp(y)
( / / < / Ao (Y rﬂlm)d01> < / (A0, (y — 762)) d<92> du(g;)dﬂ(y)fm (11)
/ /(/ rn (Y _mlm)d91>2 dp(a)du(y) ’"

for some integer m, where m is the number of doing the above process. By Cauchy-Schwarz,

this is
> ([ [Nt s dutaute))

2m+1
([ [roan )
where E is a 2-chain.

Therefore for all = > 0, (4) holds. This completes the proof.

2m+1
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Pouecmep yrnusepcumemd, Huio-Hopx, 14627, AKIII
2Kabblk HYKTe KOHMUrypanusajaapbl »XoHe Xaycaopd eJmieMisiri
Amnnoranusi: Makanaga d(d > 2) emmempai RY  KUBIHBIHBIE, KOMIAKTTHl FE >KHBIHIIACHIHBIH, xaycaopdrik
eJIeMIisiri Kerepiikreil yiakeH koHe (G - opbip 6eJiiri Karay rpad OosiaThiH eki GeJKTI XKyJIAbI3Abl rpad OosFraHaa,
rpad apKpLIbl 6epiired FE -jeri KallbIKTBIKTAp *KUBIHBIHBIH ColiKec ormeM ikl Jleber esemi oH GoIATHIHBI JDJIEJIEH/T].
Conbiven Karap, dimpg(FE) xerepiikreil yikeHn Goirania

[vatrdive® > o

TEHCI3IIrl OpBIHJAJATBIHBI Jpjesaenai. MyHaarel vg — G -Je aHbIKTaJFaH KAIIbIKTBIKTap KeHicTiringeri ®@pocrmen
eJieMi apKbLIbl MHIyKIUsIanFaln ejeM. Jlepbec »karjaiina, 6yi1 jgereHimiz ke3 kejqren r > 0 yuri rt Tebesiepi e
E xaraTbiH (t—) KozTasraH, Tebesepi e E -ne »KaraTblH KOHMUTYpaIUsijiap KUbIHbI TaObLIa/IbI.

TyiiiH ce3mep: akbIp/bl HYKTeI KOH(MUIYpPAIHsIap, TONTHIK aMajlgap, CAMIIEKCTED, Xaycaopd eJmeMisiri.

A. NloceBu4, C. Mkptusig, T. Illen
Pouecmepcruti ynusepcumem, Huvto-Hopx, 14627, CIIA
Koudurypanuu 3akpbIToii Touku u XaycaopdoBa pasMepHOCTb
Abstract: B craTbe [OKa3bIBAETCSH, UTO eCAM XayCAOPOBa Da3MEPHOCTh KOMIAKTHOTO FE mommHoxkectBa R? c
pasMepHOCTBIO d > 2 JOCTATOYHO BesuKa, u ecin (G ecTh 3Be3AHBIN rpad C IAByMsl YacTsMH U KaXKJasl U3 €ro dacTei
SAIBJISIETCH 2KeCTKHUM rpadonm, To Mepa Jlebera B cOOTBETCTBYIOIIEH pa3MepHOCTH HAOOp paccTrosanmii B F |, 3amanuniit rpadom,
ABJISETCs TOJIoKUTENbHOI. Takxke mokazano, uro eciau dimp (E) sABisieTcst JOCTATOYHO BEJIHUKO, TO

[ vatrivave® > o,

rae Vg €eCcThb Mepa Ha IMPOCTPAHCTBE paccTosiHuii, 3aganHoM G, KoTopasi mHaynupoBaHa Mepoit Ppocrmena. B
YaCTHOCTH, 9TO O3HAYAET, YTO I Jioboro r > 0 cyliecTByeT MHOXKeCTBO KOH(UTrypalnii, 3aKOIUPOBAHHBIX (f) > c
BeprimHaMu B E | TaKk 9TO BEPIINHBI rt Taxyxke HaxomsaTcsi B F .

Keywords: kKoHeYHOTOUYEUYHble KOHMUI'YPAIMH, I'DYIIIOBbIE JeHCTBUS, CUMILJIEKCHI, XaycIopdoBa pPa3sMepPHOCTb.
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